Lee A, Gilbert RM. Epidemiology of Parkinson disease. Neurol Clin. 2016;34(4):955–65.
Article
PubMed
Google Scholar
Schrag A, Dodel R, Spottke A, Bornschein B, Siebert U, Quinn NP. Rate of clinical progression in Parkinson’s disease. A prospective study. Mov Disord. 2007;22(7):938–45.
Article
PubMed
Google Scholar
Latourelle JC, Beste MT, Hadzi TC, Miller RE, Oppenheim JN, Valko MP, et al. Large-scale identification of clinical and genetic predictors of motor progression in patients with newly diagnosed Parkinson’s disease: a longitudinal cohort study and validation. Lancet Neurol. 2017;16(11):908–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simuni T, Siderowf A, Lasch S, Coffey CS, Caspell-Garcia C, Jennings D, et al. Longitudinal change of clinical and biological measures in early Parkinson’s disease: Parkinson’s progression markers initiative cohort. Mov Disord. 2018;33(5):771–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vu TC, Nutt JG, Holford NH. Progression of motor and nonmotor features of Parkinson’s disease and their response to treatment. Br J Clin Pharmacol. 2012;74(2):267–83.
Article
PubMed
PubMed Central
Google Scholar
Malek N, Lawton MA, Swallow DM, Grosset KA, Marrinan SL, Bajaj N, et al. Vascular disease and vascular risk factors in relation to motor features and cognition in early Parkinson’s disease. Mov Disord. 2016;31(10):1518–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cova I, Priori A. Diagnostic biomarkers for Parkinson’s disease at a glance: where are we? J Neural Transm (Vienna). 2018;125(10):1417–32.
Article
CAS
Google Scholar
Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30(12):1591–601.
Article
PubMed
Google Scholar
Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129–70.
Article
PubMed
Google Scholar
Giladi N, Tal J, Azulay T, Rascol O, Brooks DJ, Melamed E, et al. Validation of the freezing of gait questionnaire in patients with Parkinson’s disease. Mov Disord. 2009;24(5):655–61.
Article
PubMed
Google Scholar
Berg KO, Wood-Dauphinee SL, Williams JI, Maki B. Measuring balance in the elderly: validation of an instrument. Can J Public Health. 1992;83(Suppl 2):S7-11.
PubMed
Google Scholar
Wolf SL, Catlin PA, Gage K, Gurucharri K, Robertson R, Stephen K. Establishing the reliability and validity of measurements of walking time using the Emory Functional Ambulation Profile. Phys Therapy. 1999;79(12):1122–33.
Article
CAS
Google Scholar
Bohannon RW. Reference values for the timed up and go test: a descriptive meta-analysis. J Geriatr Phys Therapy. 2006;29(2):64–8.
Article
Google Scholar
Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381–95.
Article
Google Scholar
Chaudhuri KR, Martinez-Martin P, Brown RG, Sethi K, Stocchi F, Odin P, et al. The metric properties of a novel non-motor symptoms scale for Parkinson’s disease: results from an international pilot study. Mov Disord. 2007;22(13):1901–11.
Article
PubMed
Google Scholar
Fawzi MH, Fawzi MM, Abu-Hindi W. Arabic version of the Major Depression Inventory as a diagnostic tool: reliability and concurrent and discriminant validity. East Mediterr Health J. 2012;18(4):304–10.
Article
CAS
PubMed
Google Scholar
Shalash AS, Hamid E, Elrassas HH, Bedair AS, Abushouk AI, Khamis M, et al. Non-motor symptoms as predictors of quality of life in Egyptian patients with Parkinson’s disease: a cross-sectional study using a culturally adapted 39-item Parkinson’s Disease Questionnaire. Front Neurol. 2018;9:357.
Article
PubMed
PubMed Central
Google Scholar
Tuijl JP, Scholte EM, de Craen AJ, van der Mast RC. Screening for cognitive impairment in older general hospital patients: comparison of the Six-Item Cognitive Impairment Test with the Mini-Mental State Examination. Int J Geriatr Psychiatry. 2012;27(7):755–62.
Article
PubMed
Google Scholar
Shalash A, Alexoudi A, Knudsen K, Volkmann J, Mehdorn M, Deuschl G. The impact of age and disease duration on the long-term outcome of neurostimulation of the subthalamic nucleus. Parkinsonism Relat Disord. 2014;20(1):47–52.
Article
PubMed
Google Scholar
Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol. 1987;149(2):351–6.
Article
CAS
PubMed
Google Scholar
Scheltens P, Barkhof F, Leys D, Pruvo JP, Nauta JJ, Vermersch P, et al. A semiquantitative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. J Neurol Sci. 1993;114(1):7–12.
Article
CAS
PubMed
Google Scholar
Beyer MK, Aarsland D, Greve OJ, Larsen JP. Visual rating of white matter hyperintensities in Parkinson’s disease. Mov Disord. 2006;21(2):223–9.
Article
PubMed
Google Scholar
Schiess MC, Zheng H, Soukup VM, Bonnen JG, Nauta HJ. Parkinson’s disease subtypes: clinical classification and ventricular cerebrospinal fluid analysis. Parkinsonism Relat Disord. 2000;6(2):69–76.
Article
CAS
PubMed
Google Scholar
Antonini A, Barone P, Marconi R, Morgante L, Zappulla S, Pontieri FE, et al. The progression of non-motor symptoms in Parkinson’s disease and their contribution to motor disability and quality of life. J Neurol. 2012;259(12):2621–31.
Article
PubMed
Google Scholar
Rupert G Jr. Simultaneous statistical inference. 2nd ed. New York: Springer Science & Business Media; 2012.
Google Scholar
Holford N, Nutt JG. Disease progression, drug action and Parkinson’s disease: why time cannot be ignored. Eur J Clin Pharmacol. 2008;64(2):207–16.
Article
PubMed
Google Scholar
Chahine LM, Siderowf A, Barnes J, Seedorff N, Caspell-Garcia C, Simuni T, et al. Predicting progression in Parkinson’s disease using baseline and 1-year change measures. J Parkinsons Dis. 2019;9(4):665–79.
Article
PubMed
PubMed Central
Google Scholar
Raval V, Nguyen KP, Gerald A, Dewey RB Jr, Montillo A. Prediction of individual progression rate in Parkinson's disease using clinical measures and biomechanical measures of gait and postural stability. Proc IEEE Int Conf Acoust Speech Signal Process. 2020; 1319–1323.
Lewis MM, Harkins E, Lee EY, Stetter C, Snyder B, Corson T, et al. Clinical progression of Parkinson’s Disease: insights from the NINDS common data elements. J Parkinsons Dis. 2020;10(3):1075–85.
Article
PubMed
PubMed Central
Google Scholar
Reinoso G, Allen JC Jr, Au WL, Seah SH, Tay KY, Tan LC. Clinical evolution of Parkinson’s disease and prognostic factors affecting motor progression: 9-year follow-up study. Eur J Neurol. 2015;22(3):457–63.
Article
CAS
PubMed
Google Scholar
Holden SK, Finseth T, Sillau SH, Berman BD. Progression of MDS-UPDRS scores over five years in De Novo Parkinson disease from the Parkinson’s progression markers initiative cohort. Mov Disord Clin Pract. 2018;5(1):47–53.
Article
PubMed
Google Scholar
Santiago JA, Bottero V, Potashkin JA. Biological and clinical implications of comorbidities in Parkinson’s disease. Front Aging Neurosci. 2017;9:394.
Article
PubMed
PubMed Central
Google Scholar
Saluja A, Parihar J, Garg D, Dhamija RK. The impact of COVID-19 pandemic on disease severity and quality of life in Parkinson’s disease. Ann Indian Acad Neurol. 2021;24(2):217–26.
PubMed
PubMed Central
Google Scholar
Shalash A, Roushdy T, Essam M, Fathy M, Dawood NL, Abushady EM, et al. Mental health, physical activity, and quality of life in Parkinson’s disease during COVID-19 pandemic. Mov Disord. 2020;35(7):1097–9.
Article
CAS
PubMed
Google Scholar
Douma EH, de Kloet ER. Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. Neurosci Biobehav Rev. 2020;108:48–77.
Article
CAS
PubMed
Google Scholar
Goldstein DS. Stress, allostatic load, catecholamines, and other neurotransmitters in neurodegenerative diseases. Cell Mol Neurobiol. 2012;32(5):661–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chapuis S, Ouchchane L, Metz O, Gerbaud L, Durif F. Impact of the motor complications of Parkinson’s disease on the quality of life. Mov Disord. 2005;20(2):224–30.
Article
PubMed
Google Scholar
Abraham DS, Gruber-Baldini AL, Magder LS, McArdle PF, Tom SE, Barr E, et al. Sex differences in Parkinson’s disease presentation and progression. Parkinsonism Relat Disord. 2019;69:48–54.
Article
PubMed
PubMed Central
Google Scholar
Iwaki H, Blauwendraat C, Leonard HL, Makarious MB, Kim JJ, Liu G, et al. Differences in the presentation and progression of Parkinson’s disease by sex. Mov Disord. 2021;36(1):106–17.
Article
PubMed
Google Scholar
Aleksovski D, Miljkovic D, Bravi D, Antonini A. Disease progression in Parkinson subtypes: the PPMI dataset. Neurol Sci. 2018;39(11):1971–6.
Article
PubMed
Google Scholar
Ferguson LW, Rajput AH, Rajput A. Early-onset vs late-onset Parkinson’s disease: a clinical-pathological study. Can J Neurol Sci. 2016;43(1):113–9.
Article
PubMed
Google Scholar
Mollenhauer B, Zimmermann J, Sixel-Döring F, Focke NK, Wicke T, Ebentheuer J, et al. Baseline predictors for progression 4 years after Parkinson’s disease diagnosis in the De Novo Parkinson Cohort (DeNoPa). Mov Disord. 2019;34(1):67–77.
Article
PubMed
Google Scholar
Marras C, Rochon P, Lang AE. Predicting motor decline and disability in Parkinson disease: a systematic review. Arch Neurol. 2002;59(11):1724–8.
Article
PubMed
Google Scholar
Paul KC, Chuang YH, Shih IF, Keener A, Bordelon Y, Bronstein JM, et al. The association between lifestyle factors and Parkinson’s disease progression and mortality. Mov Disord. 2019;34(1):58–66.
Article
PubMed
PubMed Central
Google Scholar
Nag N, Jelinek GA. A narrative review of lifestyle factors associated with Parkinson’s disease risk and progression. Neurodegener Dis. 2019;19(2):51–9.
Article
PubMed
Google Scholar
Ayala A, Triviño-Juárez JM, Forjaz MJ, Rodríguez-Blázquez C, Rojo-Abuin JM, Martínez-Martín P. Parkinson’s disease severity at 3 years can be predicted from non-motor symptoms at baseline. Front Neurol. 2017;8:551.
Article
PubMed
PubMed Central
Google Scholar
Chung SJ, Lee YH, Yoo HS, Oh JS, Kim JS, Ye BS, et al. White matter hyperintensities as a predictor of freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord. 2019;66:105–9.
Article
PubMed
Google Scholar
Pozorski V, Oh JM, Okonkwo O, Krislov S, Barzgari A, Theisen F, et al. Cross-sectional and longitudinal associations between total and regional white matter hyperintensity volume and cognitive and motor function in Parkinson’s disease. Neuroimage Clin. 2019;23: 101870.
Article
PubMed
PubMed Central
Google Scholar
Huo Y, Hong W, Huang J, Wang C, Ma J, Liu D, et al. White matter hyperintensities and the progression from mild parkinsonian signs to parkinsonism and Parkinson’s disease. Neurobiol Aging. 2020;96:267–76.
Article
PubMed
Google Scholar
Rektor I, Svátková A, Vojtíšek L, Zikmundová I, Vaníček J, Király A, et al. White matter alterations in Parkinson’s disease with normal cognition precede grey matter atrophy. PLoS ONE. 2018;13(1): e0187939.
Article
PubMed
PubMed Central
Google Scholar
Choe CU, Petersen E, Lezius S, Cheng B, Schulz R, Buhmann C, et al. Association of lipid levels with motor and cognitive function and decline in advanced Parkinson’s disease in the Mark-PD study. Parkinsonism Relat Disord. 2021;85:5–10.
Article
PubMed
Google Scholar
Sääksjärvi K, Knekt P, Männistö S, Lyytinen J, Heliövaara M. Prospective study on the components of metabolic syndrome and the incidence of Parkinson’s disease. Parkinsonism Relat Disord. 2015;21(10):1148–55.
Article
PubMed
Google Scholar
Fu X, Wang Y, He X, Li H, Liu H, Zhang X. A systematic review and meta-analysis of serum cholesterol and triglyceride levels in patients with Parkinson’s disease. Lipids Health Dis. 2020;19(1):97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ascherio A, LeWitt PA, Xu K, Eberly S, Watts A, Matson WR, et al. Urate as a predictor of the rate of clinical decline in Parkinson disease. Arch Neurol. 2009;66(12):1460–8.
Article
PubMed
PubMed Central
Google Scholar
Sleeman I, Lawson RA, Yarnall AJ, Duncan GW, Johnston F, Khoo TK, et al. Urate and homocysteine: predicting motor and cognitive changes in newly diagnosed Parkinson’s disease. J Parkinsons Dis. 2019;9(2):351–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu IC, Hsu CC, Chen CY, Chuang SC, Cheng CW, Hsieh WS, et al. Paradoxical relationship between glycated hemoglobin and longitudinal change in physical functioning in older adults: a prospective cohort study. J Gerontol A Biol Sci Med Sci. 2019;74(6):949–56.
Article
CAS
PubMed
Google Scholar