Acker CM, Forest SK, Zinkowski R, Davies P, d’Abramo C. Sensitive quantitative assays for tau and phospho-tau in transgenic mouse models. Neurobiol Aging. 2013;34(1):338–50.
Article
CAS
PubMed
Google Scholar
Anstey KJ, Cherbuin N, Herath PM, Qiu C, Kulleret LH, Lopez OL, et al. A self-report risk index to predict occurrence of dementia in three independent cohorts of older adults: the ANU-ADRI. PLoS One. 2014;9:e86141.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ballatore C, Lee VM, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci. 2007;8(9):663–72.
Article
CAS
PubMed
Google Scholar
Bao F, Wicklund L, Lacor PN, Klein WL, Nordberg A, Marutle A. Different β-amyloid oligomer assemblies in Alzheimer brains correlate with age of disease onset and impaired cholinergic activity. Neurobiol Aging. 2012;33:825.e1–e13.
Article
CAS
Google Scholar
Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimer’s & dementia. 2007;3:186-91.
Carlo MD. Simple model systems: a challenge for Alzheimer’s disease. Immun Ageing. 2012;9:3.
Article
PubMed
PubMed Central
Google Scholar
Caterina MJ. Transient receptor potential ion channels as participants in thermosensation and thermoregulation. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R64–76.
Article
CAS
PubMed
Google Scholar
Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288(5464):306–13.
Article
CAS
PubMed
Google Scholar
Chen Y, Liang Z, Blanchard J, Dai CL, Sun S, Lee MH, et al. A non-transgenic mouse model (icv-STZ mouse) of Alzheimer’s disease: similarities to and differences from the transgenic model (3xTg-AD mouse). Mol Neurobiol. 2013;47(2):711–25.
Article
CAS
PubMed
Google Scholar
Chen Y, Liang Z, Tian Z, Blanchard J, Dai CL, Chalbot S, et al. Intracerebroventricular streptozotocin exacerbates Alzheimer-like changes of 3xTg-AD mice. Mol Neurobiol. 2014;49(1):547–62.
Article
CAS
PubMed
Google Scholar
Cohen TJ, Guo JL, Hurtado DE, Kwong LK, Mills IP, Trojanowski JQ, et al. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nature Commun. 2011;2:252.
Article
Google Scholar
Cole SL, Vassar R. The Alzheimer’s disease beta-secretase enzyme, BACE1. Mol Neurodegener. 2007;2:22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB, et al. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest. 2005;115:3285–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cisek KL, Cooper GJ, Huseby C, Kuret J. Structure and mechanism of action of tau aggregation inhibitors. Curr Alzheimer Res. 2014;11(10):918–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378(6559):785.
Article
CAS
PubMed
Google Scholar
de la Monte SM. Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res. 2012;9(1):35–66.
Article
PubMed
PubMed Central
Google Scholar
Desai BS, Schneider JA, Li JL, Carvey PM, Hendey B. Evidence of angiogenic vessels in Alzheimer’s disease. J Neural Transm. 2009;116(5):587–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doyle MW, Bailey TW, Jin YH, Andresen MC. Vanilloid receptors presynaptically modulate cranial visceral afferent synaptic transmission in nucleus tractus solitarius. J Neurosci. 2002;22(18):8222–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duffy AM, Bouchier-Hayes DJ, Harmey JH. Vascular endothelial growth factor (VEGF) and its role in non-endothelial cells: autocrine signalling by VEGF. VEGF Cancer. 2004:133–44.
Esparza TJ, Zhao H, Cirrito JR, Cairns NJ, Bateman RJ, Holtzman DM, et al. Amyloidbeta oligomerization in Alzheimer dementia versus high-pathology controls. Ann Neurol. 2013;73:104–19.
Article
CAS
PubMed
Google Scholar
Findeis MA. The role of amyloid β-peptide 42 in Alzheimer’s disease. Pharmacol Ther. 2007;116:266–86.
Article
CAS
PubMed
Google Scholar
Gibson HE, Edwards JG, Page RS, Van Hook MJ, Kauer JA. TRPV1 channels mediate long-term depression at synapses on hippocampal interneurons. Neuron. 2008;57(5):746–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184–5.
Article
CAS
PubMed
Google Scholar
Harkany T, Abraham I, Timmerman W, Laska G, Tóth B, Sasvári M, et al. β-Amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis. Eur J Neurosci. 2000;12:2735–45.
Article
CAS
PubMed
Google Scholar
Helliwell RJ, McLatchie LM, Clarke M, Winter J, Bevan S, McIntyre P. Capsaicin sensitivity is associated with the expression of the vanilloid (capsaicin) receptor (VR1) mRNA in adult rat sensory ganglia. Neurosci Lett. 1998;250(3):177–80.
Article
CAS
PubMed
Google Scholar
Huang S, Szallasi A. Transient receptor potential (TRP) channels in drug discovery: Old concepts & new thoughts. Pharmaceuticals (Basel). 2017;10(3):64.
Article
PubMed Central
CAS
Google Scholar
Iqbal K, Grundke-Iqbal I. Alzheimer’s disease, a multifactorial disorder seeking multitherapies. Alzheimers Dement. 2010;6:420–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishiguro K, Shiratsuchi A, Sato S, Omori A, Arioka M, Kobayashi S, et al. Glycogen synthase kinase 3β is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Lett. 1993;325(3):167–72.
Article
CAS
PubMed
Google Scholar
Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell. 2010;142:387–97.
Article
CAS
PubMed
Google Scholar
Jiang X, Jia LW, Li XH, Cheng XS, Xie JZ, Ma ZW, et al. Capsaicin ameliorates stress-induced Alzheimer’s disease-like pathological and cognitive impairments in rats. J Alzheimers Dis. 2013;35(1):91–105.
Article
CAS
PubMed
Google Scholar
Johnston AM, Pirola L, Van Obberghen E. Molecular mechanisms of insulin receptor substrate protein-mediated modulation of insulin signalling. FEBS Lett. 2003;546(1):32–6.
Article
CAS
PubMed
Google Scholar
Kasckow JW, Mulchahey JJ, Thomas D Jr. Effects of the vanilloid agonist olvanil and antagonist capsazepine on rat behaviors. Prog Neuro-Psychopharmacol Biol Psychiatry. 2004;28(2):291–5.
Article
CAS
Google Scholar
Khorrami A, Ghanbarzadeh S, Mahmoudi J, Nayobi AM, Maloki-Dazaji N, Garjani A. Investigation of the memory impairment in rats fed with oxidized-cholesterol-rich diet employing passive avoidance test. Drug Res. 2014;64:1–7.
Article
Google Scholar
Kirkpatrick LA, Feeney BC. A simple guide to IBM SPSS statistics for version 20.0. Student ed. Belmont: Wadsworth, Cengage Learning; 2013.
Google Scholar
Knezovic A, Osmanovic-Barilar J, Curlin M, Hof PR, Simic G, Riederer P. Staging of cognitive deficits and neuropathological and ultrastructural changes in streptozotocin-induced rat model of Alzheimer’s disease. J Neural Transm (Vienna). 2015;122(4):577–92.
Article
CAS
PubMed
Google Scholar
Koudinov AR, Berezov TT. Alzheimer’s amyloid- beta (Aβ) is an essential synaptic protein, not neurotoxic junk. Acta Neurobiol Exp. 2004;64:71–9.
Google Scholar
Lannert H, Hoyer S. Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci. 1998;112(5):1199.
Article
CAS
PubMed
Google Scholar
Li HB, Mao RR, Zhang JC, Yang Y, Cao J, Xu L. Antistress effect of TRPV1 channel on synaptic plasticity and spatial memory. Biol Psychiatry. 2008;64(4):286–92.
Article
CAS
PubMed
Google Scholar
Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX. Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J Pathol. 2011;225(1):54–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maione S, Cristino L, Migliozzi AL, Georgiou AL, Starowicz K, Salt TE, et al. TRPV1 channels control synaptic plasticity in the developing superior colliculus. J Physiol. 2009;587(11):2521–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marinelli S, Di Marzo V, Berretta N, Matias I, Maccarrone M, Bernardi G, et al. Presynaptic facilitation of glutamatergic synapses to dopaminergic neurons of the rat substantia nigra by endogenous stimulation of vanilloid receptors. J Neurosci. 2003;23(8):3136–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marinelli S, Di Marzo V, Florenzano F, Fezza F, Viscomi MT, van der Stelt M, et al. N-arachidonoyl-dopamine tunes synaptic transmission onto dopaminergic neurons by activating both cannabinoid and vanilloid receptors. Neuropsychopharmacology. 2007;32(2):298.
Article
CAS
PubMed
Google Scholar
Marsch R, Foeller E, Rammes G, Bunck M, Kössl M, Holsboer F, et al. Reduced anxiety, conditioned fear, and hippocampal long-term potentiation in transient receptor potential vanilloid type 1 receptor-deficient mice. J Neurosci. 2007;27(4):832–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mehan S, Arora R, Sehgal V, Sharma D, Sharma G. Inflammatory diseases – immunopathology, clinical and pharmacological bases. In: Khatami M, editor. Dementia: a complete literature review on various mechanisms involved in pathogenesis and an intracerebroventricular streptozotocin-induced Alzheimer’s disease. InTech: Rijeka; 2012. p. 3–19.
Google Scholar
Micale V, Cristino L, Tamburella A, Petrosino S, Leggio GM, Drago F, et al. Anxiolytic effects in mice of a dual blocker of fatty acid amide hydrolase and transient receptor potential vanilloid type-channels. Neuropsychopharmacology. 2009;34(3):593.
Article
CAS
PubMed
Google Scholar
Mietelska-Porowska A, Wasik U, Goras M, Filipek A, Niewiadomska G. Tau protein modifications and interactions: their role in function and dysfunction. Int J Mol Sci. 2014;15(3):4671–713.
Article
PubMed
PubMed Central
CAS
Google Scholar
Min JK, Han KY, Kim EC, Kim YM, Lee SW, Kim OH, et al. Capsaicin inhibits in vitro and in vivo angiogenesis. Cancer Res. 2004;64(2):644–51.
Article
CAS
PubMed
Google Scholar
Moosavi M, Naghdi N, Choopani S. Intra CA1 insulin microinjection improves memory consolidation and retrieval. Peptides. 2007b;28:1029–34.
Article
CAS
PubMed
Google Scholar
Moosavi M, Naghdi N, Maghsoudi N, Zahedi S. Insulin protects against stress-induced impairments in water maze performance Behavioral Brain Research. 2007;176:230–6.
Article
CAS
PubMed
Google Scholar
Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Meth. 1984;11(1):47–60.
Article
CAS
Google Scholar
Murphy MP, Harry LVH. Alzheimer’s disease and the β-amyloid peptide. J Alzheimers Dis. 2010;19(1):311.
Article
PubMed
PubMed Central
CAS
Google Scholar
Musella A, De Chiara V, Rossi S, Prosperetti C, Bernardi G, Maccarrone M, et al. TRPV1 channels facilitate glutamate transmission in the striatum. Mol Cell Neurosci. 2009;40(1):89–97.
Article
CAS
PubMed
Google Scholar
Nagy I, Sántha P, Jancsó G, Urbán L. The role of the vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology. Eur J Pharmacol. 2004;500(1-3):351–69.
Article
CAS
PubMed
Google Scholar
O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci. 2011;34:185–204.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pákáskia M, Hugyecz M, Sántha P, Jancsó G, AnnamáriaBjelika A, DomokosaZoltán D, et al. Capsaicin promotes the amyloidogenic route of brain amyloid precursor protein processing. Neurochem Int. 2009;54(7):426–30.
Article
CAS
Google Scholar
Palazzo E, Rossi F, Maione S. Role of TRPV1 receptors in descending modulation of pain. Mol Cell Endocrinol. 2008;286(1-2):S79–83.
Article
CAS
PubMed
Google Scholar
Paxinos G, Watson C. A stereotaxic atlas of the rat brain. New York: NY Academic; 1998.
Google Scholar
Phiel CJ, Wilson CA, Lee VM-Y, Klein PS. GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature. 2003;423(6938):435–9.
Article
CAS
PubMed
Google Scholar
Pogue AI, Lukiw WJ. Angiogenic signaling in Alzheimer’s disease. Neuroreport. 2004;15:1507–10.
Article
PubMed
Google Scholar
Puig B, Ribe EM, Dalfo E. Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer’s disease and tauopathies. Curr Alzheimer Res. 2005;2:3–18.
Article
PubMed
Google Scholar
Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci. 2009;11:111–28.
PubMed
PubMed Central
Google Scholar
Ravelli KG, dos Anjos RB, Camarini R, Hernandes MS, Britto LR. Intracerebroventricular streptozotocin as a model of Alzheimer’s disease: neurochemical and behavioral characterization in mice. Neurotoxi Res. 2016:1–7.
Ribatti D. Chicken chorioallantoic membrane angiogenesis model. In: Cardiovascular development. Totowa: Humana Press; 2012. p. 47–57.
Chapter
Google Scholar
Sakurai M, Sekiguchi M, Zushida K, Yamada K, Nagamine S, Kabuta T, et al. Reduction in memory in passive avoidance learning, exploratory behaviour and synaptic plasticity in mice with a spontaneous deletion in the ubiquitin C-terminal hydrolase L1 gene. Eur J Neurosci. 2008;27(3):691–701.
Article
PubMed
Google Scholar
Santos CJ, Stern CA, Bertoglio LJ. Attenuation of anxiety-related behaviour after the antagonism of transient receptor potential vanilloid type 1 channels in the rat ventral hippocampus. Behav Pharmacol. 2008;19(4):357–60.
Article
CAS
PubMed
Google Scholar
Schultheiss C, Blechert B, Gaertner FC, Drecoll E, Mueller J, Weber GFS, et al. In vivo characterization of endothelial cell activation in a transgenic mouse model of Alzheimer’s disease. Angiogenesis. 2006;9:59–65.
Article
CAS
PubMed
Google Scholar
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011. https://doi.org/10.1101/cshperspect.a006189.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shibuya M. Brain angiogenesis in developmental and pathological processes: therapeutic aspects of vascular endothelial growth factor. FEBS J. 2009;276:4636–43.
Article
CAS
PubMed
Google Scholar
Sim YJ. Treadmill exercise alleviates impairment of spatial learning ability through enhancing cell proliferation in the streptozotocin-induced Alzheimer’s disease rats. J Exerc Rehabil. 2014;10(2):81–8.
Article
PubMed
PubMed Central
Google Scholar
Song J, Hur BE, Bokara KK, Yang W, Cho HJ, Park KA, et al. Agmatine improves cognitive dysfunction and prevents cell death in a streptozotocin-induced Alzheimer rat model. Yonsei Med J. 2014;55(3):689–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Srinivasan S. The effect of polyphenols in spices on the aggregation of the amyloid-beta peptide 1-40. In: Aaas Annual Meeting: Aaas; 2017.
Szallasi A, Blumberg PM. Characterization of vanilloid receptors in the dorsal horn of pig spinal cord. Brain Res. 1991;547(2):335–8.
Article
CAS
PubMed
Google Scholar
Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, et al. Clearance systems in the brain—implications for Alzheimer disease. Nat Rev Neurol. 2015;11(8):457.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tarkowski E, Issa R, Sjogren M, Wallin A, Blennow K, Tarkowski A, et al. Increased intrathecal levels of the angiogenic factors VEGF and TGF-beta in Alzheimer’s disease and vascular dementia. Neurobiol Aging. 2002;23:237–43.
Article
CAS
PubMed
Google Scholar
Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron. 1998;21(3):531–43.
Article
CAS
PubMed
Google Scholar
Xia W, Yang T, Smith IM, Shen Y, Walsh DM, Selkoe DJ. A specific ELISA for measuring amyloid β-protein oligomers in human plasma and the brains of Alzheimer patients. Arch Neurol. 2009;66(2):190–9.
Article
PubMed
PubMed Central
Google Scholar
Xie L, Helmerhorst E, Plewright B, Van Bronswijk W, Martins R. Alzheimer’s beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci. 2002;22(RC221):1–5.
Google Scholar
Yang HJ, Kwon DY, Kim MJ, Kang S, Moon NR, Daily JW, et al. Red peppers with moderate and severe pungency prevent the memory deficit and hepatic insulin resistance in diabetic rats with Alzheimer’s disease. Nutr Metabol. 2015;12:9.
Article
CAS
Google Scholar
Yang KM, Pyo JO, Kim GY, Yu R, Han IS, Ju SA, et al. Capsaicin induces apoptosis by generating reactive oxygen species and disrupting mitochondrial transmembrane potential in human colon cancer cell lines. Cell Mol Biol Lett. 2009;14(3):497.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoon SS, Ahn JS. Mechanisms of amyloid-β peptide clearance: potential therapeutic targets for Alzheimer’s disease. Biomol Ther. 2012;20(3):245–55.
Article
CAS
Google Scholar