Penney J, Ralvenius WT, Tsai L-H. Modeling Alzheimer’s disease with iPSC-derived brain cells. Mol Psychiatry. 2020;25:148–67.
Article
PubMed
Google Scholar
Erkkinen MG, Kim M-O, Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2018;10: a033118.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dumurgier J, Sabia S. Epidemiology of Alzheimer’s disease: latest trends. Rev Prat. 2020;70:149–51.
PubMed
Google Scholar
Mielke MM. Sex and gender differences in Alzheimer’s disease dementia. Psychiatr Times. 2018;35:14–7.
PubMed
PubMed Central
Google Scholar
Eratne D, Loi SM, Farrand S, Kelso W, Velakoulis D, Looi JC. Alzheimer’s disease: clinical update on epidemiology, pathophysiology and diagnosis. Aust Psychiatry Bull R Aust N Zeal Coll Psychiatr. 2018;26:347–57.
Google Scholar
Hampel H, Mesulam M-M, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 2018;141:1917–33.
Article
PubMed
PubMed Central
Google Scholar
Cummings JL, Tong G, Ballard C. Treatment combinations for Alzheimer’s disease: current and future pharmacotherapy options. J Alzheimers Dis. 2019;67:779–94.
Article
PubMed
PubMed Central
Google Scholar
Hogan DB. Long-term efficacy and toxicity of cholinesterase inhibitors in the treatment of Alzheimer disease. Can J Psychiatry. 2014;59:618–23.
Article
PubMed
PubMed Central
Google Scholar
Xu H, Garcia-Ptacek S, Jönsson L, Anders W, Nordström P, Eriksdotter M. Long term effects of cholinesterase inhibitors on cognitive decline and mortality. Neurology. 2021. https://doi.org/10.1212/WNL.0000000000011832.
Article
PubMed
PubMed Central
Google Scholar
Idkowiak-Baldys J, Santhanam U, Buchanan SM, Pfaff KL, Rubin LL, Lyga J. Growth differentiation factor 11 (GDF11) has pronounced effects on skin biology. PLoS ONE. 2019;14:e0218035–e0218035.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poggioli T, Vujic A, Yang P, Macias-Trevino C, Uygur A, Loffredo FS, et al. Circulating growth differentiation factor 11/8 levels decline with age. Circ Res. 2016;118:29–37.
Article
CAS
PubMed
Google Scholar
Hudobenko J, Ganesh BP, Jiang J, Mohan EC, Lee S, Sheth S, et al. Growth differentiation factor-11 supplementation improves survival and promotes recovery after ischemic stroke in aged mice. Aging (Albany NY). 2020;12:8049–66.
Article
CAS
Google Scholar
Zhang W, Guo Y, Li B, Zhang Q, Liu JH, Gu GJ, et al. GDF11 Rejuvenates cerebrovascular structure and function in an animal model of Alzheimer’s disease. J Alzheimer’s Dis. 2018;62:807–19.
Article
CAS
Google Scholar
Loffredo FS, Steinhauser ML, Jay SM, Gannon J, Pancoast JR, Yalamanchi P, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell. 2013;153:828–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sinha M, Jang YC, Oh J, Khong D, Wu EY, Manohar R, et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science. 2014;344:649–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Li Q, Liu D, Huang Q, Cai G, Cui S, et al. GDF11 improves tubular regeneration after acute kidney injury in elderly mice. Sci Rep. 2016;6:34624.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Shao J, Wang Z, Yang T, Liu S, Liu Y, et al. Growth differentiation factor 11 is a protective factor for osteoblastogenesis by targeting PPARgamma. Gene. 2015;557:209–14.
Article
CAS
PubMed
Google Scholar
Rochette L, Mazini L, Meloux A, Zeller M, Cottin Y, Vergely C, et al. Anti-aging effects of GDF11 on skin. Int J Mol Sci. 2020;21:2598.
Article
CAS
PubMed Central
Google Scholar
Ozek C, Krolewski RC, Buchanan SM, Rubin LL. Growth differentiation factor 11 treatment leads to neuronal and vascular improvements in the hippocampus of aged mice. Sci Rep. 2018;8:17293.
Article
PubMed
PubMed Central
CAS
Google Scholar
DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019;14:32.
Article
PubMed
PubMed Central
Google Scholar
Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol. 2016;14:101–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mesulam M-M. Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer’s disease. J Comp Neurol. 2013. https://doi.org/10.1002/cne.23415.
Article
PubMed
PubMed Central
Google Scholar
Majdi A, Sadigh-Eteghad S, Rahigh Aghsan S, Farajdokht F, Vatandoust SM, Namvaran A, et al. Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: seeking direction in a tangle of clues. Rev Neurosci. 2020;31:391–413.
Article
CAS
PubMed
Google Scholar
Ramos-Rodriguez JJ, Pacheco-Herrero M, Thyssen D, Murillo-Carretero MI, Berrocoso E, Spires-Jones TL, et al. Rapid β-amyloid deposition and cognitive impairment after cholinergic denervation in APP/PS1 mice. J Neuropathol Exp Neurol. 2013;72:272–85.
Article
CAS
PubMed
Google Scholar
Galvão F, Grokoski KC, da Silva BB, Lamers ML, Siqueira IR. The amyloid precursor protein (APP) processing as a biological link between Alzheimer’s disease and cancer. Ageing Res Rev. 2019;49:83–91.
Article
PubMed
CAS
Google Scholar
Coronel R, Bernabeu-Zornoza A, Palmer C, Muñiz-Moreno M, Zambrano A, Cano E, et al. Role of amyloid precursor protein (APP) and its derivatives in the biology and cell fate specification of neural stem cells. Mol Neurobiol. 2018;55:7107–17.
Article
CAS
PubMed
Google Scholar
Menon P. The amyloid-β precursor protein (APP) and its adaptor protein Fe65: two key players in Alzheimer’s disease. Department of Biochemistry and Biophysics: Stockholm University; 2020.
Google Scholar
Sun X, Chen W-D, Wang Y-D. β-Amyloid: the key peptide in the pathogenesis of Alzheimer’s disease. Front Pharmacol. 2015;6:221.
PubMed
PubMed Central
Google Scholar
Dominici R, Finazzi D, Polito L, Oldoni E, Bugari G, Montanelli A, et al. Comparison of β2-microglobulin serum level between Alzheimer’s patients, cognitive healthy and mild cognitive impaired individuals. Biomarkers. 2018;23:603–8.
Article
CAS
PubMed
Google Scholar
Lucey BP, Hicks TJ, McLeland JS, Toedebusch CD, Boyd J, Elbert DL, et al. Effect of sleep on overnight cerebrospinal fluid amyloid β kinetics. Ann Neurol. 2018;83:197–204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alonso AD, Beharry C, Corbo CP, Cohen LS. Molecular mechanism of prion-like tau-induced neurodegeneration. Alzheimer’s Dement. 2016;12:1090–7.
Article
Google Scholar
Wu X-L, Piña-Crespo J, Zhang Y-W, Chen X-C, Xu H-X. Tau-mediated neurodegeneration and potential implications in diagnosis and treatment of Alzheimer’s disease. Chin Med J (Engl). 2017;130:2978–90.
Article
CAS
Google Scholar
Fernandez-Valenzuela JJ, Sanchez-Varo R, Muñoz-Castro C, De Castro V, Sanchez-Mejias E, Navarro V, et al. Enhancing microtubule stabilization rescues cognitive deficits and ameliorates pathological phenotype in an amyloidogenic Alzheimer’s disease model. Sci Rep. 2020;10:14776.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alonso AD, Cohen LS, Corbo C, Morozova V, ElIdrissi A, Phillips G, et al. Hyperphosphorylation of tau associates with changes in its function beyond microtubule stability. Front Cell Neurosci. 2018;12:338.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ackers I, Malgor R. Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases. Diabetes Vasc Dis Res. 2018;15:3–13.
Article
CAS
Google Scholar
Jamaiyar A, Wan W, Janota DM, Enrick MK, Chilian WM, Yin L. The versatility and paradox of GDF 11. Pharmacol Ther. 2017;175:28–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res. 2015;3:15005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker RG, Czepnik M, Goebel EJ, McCoy JC, Vujic A, Cho M, et al. Structural basis for potency differences between GDF8 and GDF11. BMC Biol. 2017;15:19.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hata A, Chen Y-G. TGF-β signaling from receptors to smads. Cold Spring Harb Perspect Biol. 2016;8: a022061.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gerardo-Ramírez M, Lazzarini-Lechuga R, Hernández-Rizo S, Jiménez-Salazar JE, Simoni-Nieves A, García-Ruiz C, et al. GDF11 exhibits tumor suppressive properties in hepatocellular carcinoma cells by restricting clonal expansion and invasion. Biochim Biophys Acta Mol Basis Dis. 2019;1865:1540–54.
Article
PubMed
CAS
Google Scholar
Bajikar SS, Wang C-C, Borten MA, Pereira EJ, Atkins KA, Janes KA. Tumor-suppressor inactivation of GDF11 occurs by precursor sequestration in triple-negative breast cancer. Dev Cell. 2017;43:418-435.e13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Dou M, Liu F, Jiang P, Ye S, Ma L, et al. GDF11 induces differentiation and apoptosis and inhibits migration of C172 neural stem cells via modulating MAPK signaling pathway. PeerJ. 2018;6: e5524.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hindi SM, Sato S, Xiong G, Bohnert KR, Gibb AA, Gallot YS, et al. TAK1 regulates skeletal muscle mass and mitochondrial function. JCI Insight. 2018. https://doi.org/10.1172/jci.insight.98441.
Article
PubMed
PubMed Central
Google Scholar
Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature. 2001;412:346–51.
Article
CAS
PubMed
Google Scholar
Chen W, Wang H, Feng J, Chen L. Overexpression of circRNA circUCK2 attenuates cell apoptosis in cerebral ischemia-reperfusion injury via miR-125b-5p/GDF11 signaling. Mol Therapy Nucleic Acids. 2020;22:673–83.
Article
CAS
Google Scholar
Liu X, Deng X, Ding R, Cheng X, Jia J. Chondrocyte suppression is mediated by miR-129-5p via GDF11/SMAD3 signaling in developmental dysplasia of the hip. J Orthop Res Off Publ Orthop Res Soc. 2020;38:2559–72.
Article
CAS
Google Scholar
Villeda SA, Plambeck KE, Middeldorp J, Castellano JM, Mosher KI, Luo J, et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med. 2014;20:659–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rochette L, Vergely C. ‘Pro-youthful’ factors in the ‘labyrinth’ of cardiac rejuvenation. Exp Gerontol. 2016;83:1–5.
Article
PubMed
Google Scholar
Hayashi Y, Mikawa S, Masumoto K, Katou F, Sato K. GDF11 expression in the adult rat central nervous system. J Chem Neuroanat. 2018;89:21–36.
Article
CAS
PubMed
Google Scholar
Shi Y, Liu J-P. Gdf11 facilitates temporal progression of neurogenesis in the developing spinal cord. J Neurosci. 2011;31:883–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koppensteiner P, Trinchese F, Fà M, Puzzo D, Gulisano W, Yan S, et al. Time-dependent reversal of synaptic plasticity induced by physiological concentrations of oligomeric Aβ42: an early index of Alzheimer’s disease. Sci Rep. 2016;6:32553.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cenini G, Lloret A, Cascella R. Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxid Med Cell Longev. 2019;2019:2105607.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rochette L, Malka G. Neuroprotective potential of GDF11: myth or reality? Int J Mol Sci. 2019;20:3563.
Article
CAS
PubMed Central
Google Scholar
Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science. 2014;344:630–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang M, Jadavji NM, Yoo H-S, Smith PD. Recombinant growth differentiation factor 11 influences short-term memory and enhances Sox2 expression in middle-aged mice. Behav Brain Res. 2018;341:45–9.
Article
CAS
PubMed
Google Scholar
Finkenzeller G, Stark GB, Strassburg S. Growth differentiation factor 11 supports migration and sprouting of endothelial progenitor cells. J Surg Res. 2015;198:50–6.
Article
CAS
PubMed
Google Scholar
Lu L, Bai X, Cao Y, Luo H, Yang X, Kang L, et al. Growth differentiation factor 11 promotes neurovascular recovery after stroke in mice. Front Cell Neurosci. 2018;12:205.
Article
PubMed
PubMed Central
CAS
Google Scholar
Katsimpardi L, Rubin LL. Young systemic factors as a medicine for age-related neurodegenerative diseases. Neurogenes (Austin, Tex). 2015;2:e1004971–e1004971.
Google Scholar
Ma J, Zhang L, Niu T, Ai C, Jia G, Jin X, et al. Growth differentiation factor 11 improves neurobehavioral recovery and stimulates angiogenesis in rats subjected to cerebral ischemia/reperfusion. Brain Res Bull. 2018;139:38–47.
Article
CAS
PubMed
Google Scholar
Zhang S, Cui W. Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J Stem Cells. 2014;6:305–11.
Article
PubMed
PubMed Central
Google Scholar
Giannoni P, Arango-Lievano M, Das NI, Rousset M-C, Baranger K, Rivera S, et al. Cerebrovascular pathology during the progression of experimental Alzheimer’s disease. Neurobiol Dis. 2016;88:107–17.
Article
CAS
PubMed
Google Scholar
Morin-Brureau M, Lebrun A, Rousset M-C, Fagni L, Bockaert J, de Bock F, et al. Epileptiform activity induces vascular remodeling and zonula occludens 1 downregulation in organotypic hippocampal cultures: role of VEGF signaling pathways. J Neurosci. 2011;31:10677–88.
Article
CAS
PubMed
PubMed Central
Google Scholar