This is a case-control study including 30 adults with anterior circulation ischemic cerebrovascular stroke patients (group 1) and 30 control healthy subjects (group 2) matching for age, sex, weight, and height. Patients were recruited from outpatient clinic of neuromuscular disorders and its surgery, Faculty of Physical Therapy, Cairo University. Included patients have stroke for more than 6 months and less than 1 year. The patients should have sufficient cognitive abilities to enable them understanding the requirements of the study. We excluded patients with frozen shoulder or any other orthopedic problems affecting the shoulders, language or hearing deficits, and diabetes mellitus. All patients had an almost equal physiotherapy program prior to the recruitment as they were following the standard program of the physical therapy department of neuromuscular disorders and its surgery, Faculty of Physical Therapy, Cairo University.
Both patients’ shoulders were assessed. The power of the affected arm ranged from 3 to 4+ according to “Medical Research Council Scale (MRC)” and spasticity from 1 to 1+ according to “Modified Aschworth Scale (MAS)” [11] to assure enough control of the patient over his range of movement. The control group (G2) was examined in the dominant shoulder only. According to brain imaging, patient’s lesions were subdivided according to site of the lesion into right or left and cortical (n = 5) or subcortical (n = 18). Patients with mixed cortical and subcortical lesions were excluded (n = 7).
Primary outcome
The primary outcome is measuring the angular displacement error during active and passive repositioning of shoulder external and internal rotation. Absolute angular displacement error is defined as the difference in degrees between indicated and reference position during joint position sense assessment [12].
Secondary outcome
The secondary outcome is finding a possible relation between persistent shoulder proprioceptive deficit and site of the brain lesion.
Procedure
Individual shoulder proprioception assessment was done using “Biodex Isokinetic Dynamometer” and Biodex system III Multijoint testing and Rehabilitation System (Biodex, Medical Inc., Shirly, NY). Patient weight, height, and personal data were introduced in the system. Patient was seated with a back tilt 85°, dynamometer orientation 20°, and tilting 50°. Positioning of the patient was done so the axis of rotation of the fulcrum of the dynamometer is corresponding to axis of rotation of the shoulder. Two crossed straps were used to fix the patient to the chair in order to obtain isolated shoulder movement.
Absolute angular error was measured in the following two situations:
Each patient was allowed to sense the reference angle of 10° for 10 s before performing the test. The tested arm was then passively moved in both directions subsequently, and the patient was asked to press a bottom with his untested hand if he feels that he reached the reference angle.
Same procedure as above was used but with the patient moving actively his limb to the reference angle relative to the starting position.
In each position reached by the patient, absolute angle displacement error was obtained by measuring the difference between the reference angle and indicated actual angle. Test was reproduced three times, and the mean of the three readings was considered final angular error.
Written consent was obtained from each patient after thorough explanation of the procedure, and the study was approved by the local ethical committee of Faculty of Physical Therapy, Cairo University.