Reddy S, Reddy V, Sharma S. Physiology, circadian rhythm. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2021. p. 1.
Nishimon S, Nishino N, Nishino S. Advances in the pharmacological management of non-24-h sleep-wake disorder. Expert Opin Pharmacother. 2021;22(8):1039–49.
Article
PubMed
Google Scholar
Cardinali DP. Melatonin and healthy aging. Vitam Horm. 2021;115:67–88.
Article
PubMed
Google Scholar
Ramirez AVG, Filho DR, de Sá LBPC. Melatonin and its relationships with diabetes and obesity: a literature review. Curr Diabetes Rev. 2021;17(7):e072620184137.
Article
PubMed
Google Scholar
Jin Y, Choi YJ, Heo K, Park SJ. Melatonin as an oncostatic molecule based on its anti-aromatase role in breast cancer. Int J Mol Sci. 2021;22(1):438.
Article
CAS
PubMed Central
Google Scholar
Kurhaluk N. Alcohol and melatonin. Chronobiol Int. 2021;38(6):785–800.
Article
CAS
PubMed
Google Scholar
Colin-Gonzalez AL, Aguilera G, Serratos IN, Escribano BM, Santamaria A, Tunez I. On the relationship between the light/dark cycle, melatonin and oxidative stress. Curr Pharm Des. 2015;21(24):3477–88.
Article
CAS
PubMed
Google Scholar
Pandi-Perumal SR, BaHammam AS, Brown GM, Spence DW, Bharti VK, Kaur C, et al. Melatonin antioxidative defense: therapeutical implications for aging and neurodegenerative processes. Neurotox Res. 2013;23(3):267–300.
Article
CAS
PubMed
Google Scholar
Baburina Y, Lomovsky A, Krestinina O. Melatonin as a potential multitherapeutic agent. J Pers Med. 2021;11(4):274.
Article
PubMed
PubMed Central
Google Scholar
Moloudizargari M, Moradkhani F, Hekmatirad S, Fallah M, Asghari MH, Reiter RJ. Therapeutic targets of cancer drugs: modulation by melatonin. Life Sci. 2021;267:118934.
Article
CAS
PubMed
Google Scholar
Oishi A, Gbahou F, Jockers R. Melatonin receptors, brain functions, and therapies. Handb Clin Neurol. 2021;179:345–56.
Article
PubMed
Google Scholar
Ruan W, Yuan X, Eltzschig HK. Circadian rhythm as a therapeutic target. Nat Rev Drug Discov. 2021;20(4):287–307.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohdo S. Chronotherapeutic strategy: rhythm monitoring, manipulation and disruption. Adv Drug Deliv Rev. 2010;62(9–10):859–75.
Article
CAS
PubMed
Google Scholar
Kelly RM, Healy U, Sreenan S, McDermott JH, Coogan AN. Clocks in the clinic: circadian rhythms in health and disease. Postgrad Med J. 2018;94(1117):653–8.
Article
CAS
PubMed
Google Scholar
Pitsillou E, Liang J, Hung A, Karagiannis TC. The circadian machinery links metabolic disorders and depression: a review of pathways, proteins and potential pharmacological interventions. Life Sci. 2021;265:118809.
Article
CAS
PubMed
Google Scholar
Gyorik D, Eszlari N, Gal Z, Gal Z, Torok D, Baksa D, et al. Every night and every morn: effect of variation in CLOCK gene on depression depends on exposure to early and recent stress. Front Psychiatry. 2021;12:687487.
Article
PubMed
PubMed Central
Google Scholar
Borrmann H, McKeating JA, Zhuang X. The circadian clock and viral infections. J Biol Rhythms. 2021;36(1):9–22.
Article
CAS
PubMed
Google Scholar
Tamaru T, Takamatsu K. Circadian modification network of a core clock driver BMAL1 to harmonize physiology from brain to peripheral tissues. Neurochem Int. 2018;119:11–6.
Article
CAS
PubMed
Google Scholar
Pace-Schott EF, Hobson JA. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci. 2002;3(8):591–605.
Article
CAS
PubMed
Google Scholar
Schwartz JR, Roth T. Neurophysiology of sleep and wakefulness: basic science and clinical implications. Curr Neuropharmacol. 2008;6(4):367–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCarley RW. Neurobiology of REM and NREM sleep. Sleep Med. 2007;8(4):302–30.
Article
PubMed
Google Scholar
Colten HR, Altevogt BM, Institute of Medicine (US) Committee on Sleep Medicine and Research, eds. Sleep disorders and sleep deprivation: an Unmet Public Health Problem. Washington (DC): National Academies Press (US); 2006.
Miller DB, O’Callaghan JP. The pharmacology of wakefulness. Metabolism. 2006;55(10 Suppl 2):S13–9.
Article
CAS
PubMed
Google Scholar
Vyazovskiy VV, Olcese U, Lazimy YM, Faraguna U, Esser SK, Williams JC, et al. Cortical firing and sleep homeostasis. Neuron. 2009;63(6):865–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benington JH, Heller HC. Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol. 1995;45(4):347–60.
Article
CAS
PubMed
Google Scholar
Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of sleep and wakefulness. Physiol Rev. 2012;92(3):1087–187.
Article
CAS
PubMed
Google Scholar
Takahashi K, Lin JS, Sakai K. Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci. 2006;26(40):10292–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirano A, Hsu PK, Zhang L, Xing L, McMahon T, Yamazaki M, et al. DEC2 modulates orexin expression and regulates sleep. Proc Natl Acad Sci U S A. 2018;115(13):3434–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98(4):437–51.
Article
CAS
PubMed
Google Scholar
Anaclet C, Parmentier R, Ouk K, Guidon G, Buda C, Sastre JP, et al. Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models. J Neurosci. 2009;29(46):14423–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zant JC, Rozov S, Wigren HK, Panula P, Porkka-Heiskanen T. Histamine release in the basal forebrain mediates cortical activation through cholinergic neurons. J Neurosci. 2012;32(38):13244–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang ZL, Zhang Z, Qu WM. Roles of adenosine and its receptors in sleep-wake regulation. Int Rev Neurobiol. 2014;119:349–71.
Article
PubMed
Google Scholar
Peng W, Wu Z, Song K, Zhang S, Li Y, Xu M. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science. 2020;369(6508):eabb0556.
Article
CAS
PubMed
Google Scholar
Landolt HP. Sleep homeostasis: a role for adenosine in humans? Biochem Pharmacol. 2008;75(11):2070–9.
Article
CAS
PubMed
Google Scholar
Kalinchuk AV, Lu Y, Stenberg D, Rosenberg PA, Porkka-Heiskanen T. Nitric oxide production in the basal forebrain is required for recovery sleep. J Neurochem. 2006;99(2):483–98.
Article
CAS
PubMed
Google Scholar
Kalinchuk AV, Stenberg D, Rosenberg PA, Porkka-Heiskanen T. Inducible and neuronal nitric oxide synthases (NOS) have complementary roles in recovery sleep induction. Eur J Neurosci. 2006;24(5):1443–56.
Article
CAS
PubMed
Google Scholar
Kárpáti A, Yoshikawa T, Naganuma F, Matsuzawa T, Kitano H, Yamada Y, et al. Histamine H1 receptor on astrocytes and neurons controls distinct aspects of mouse behaviour. Sci Rep. 2019;9(1):16451.
Article
PubMed
PubMed Central
Google Scholar
Wigren HK, Schepens M, Matto V, Stenberg D, Porkka-Heiskanen T. Glutamatergic stimulation of the basal forebrain elevates extracellular adenosine and increases the subsequent sleep. Neuroscience. 2007;147(3):811–23.
Article
CAS
PubMed
Google Scholar
Rytkönen KM, Wigren HK, Kostin A, Porkka-Heiskanen T, Kalinchuk AV. Nitric oxide mediated recovery sleep is attenuated with aging. Neurobiol Aging. 2010;31(11):2011–9.
Article
PubMed
Google Scholar
Wigren HK, Rytkönen KM, Porkka-Heiskanen T. Basal forebrain lactate release and promotion of cortical arousal during prolonged waking is attenuated in aging. J Neurosci. 2009;29(37):11698–707.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ono D, Yamanaka A. Hypothalamic regulation of the sleep/wake cycle. Neurosci Res. 2017;118:74–81.
Article
CAS
PubMed
Google Scholar
Belle MDC, Diekman CO. Neuronal oscillations on an ultra-slow timescale: daily rhythms in electrical activity and gene expression in the mammalian master circadian clockwork. Eur J Neurosci. 2018;48(8):2696–717.
Article
PubMed
Google Scholar
Tamanini F, Yagita K, Okamura H, van der Horst GT. Nucleocytoplasmic shuttling of clock proteins. Methods Enzymol. 2005;393:418–35.
Article
CAS
PubMed
Google Scholar
Fuller PM, Gooley JJ, Saper CB. Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback. J Biol Rhythms. 2006;21(6):482–93.
Article
CAS
PubMed
Google Scholar
Claustrat B, Leston J. Melatonin: physiological effects in humans. Neurochirurgie. 2015;61(2–3):77–84.
Article
CAS
PubMed
Google Scholar
Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol. 2010;72:551–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oishi Y, Lazarus M. The control of sleep and wakefulness by mesolimbic dopamine systems. Neurosci Res. 2017;118:66–73.
Article
CAS
PubMed
Google Scholar
Yu X, Li W, Ma Y, Tossell K, Harris JJ, Harding EC, et al. GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat Neurosci. 2019;22(1):106–19.
Article
CAS
PubMed
Google Scholar
Borbély AA, Daan S, Wirz-Justice A, Deboer T. The two-process model of sleep regulation: a reappraisal. J Sleep Res. 2016;25(2):131–43.
Article
PubMed
Google Scholar
Caylak E. The genetics of sleep disorders in humans: narcolepsy, restless legs syndrome, and obstructive sleep apnea syndrome. Am J Med Genet A. 2009;149A(11):2612–26.
Article
CAS
PubMed
Google Scholar
Chong SYC, Xin L, Ptáček LJ, Fu YH. Disorders of sleep and circadian rhythms. Handb Clin Neurol. 2018;148:531–8.
Article
PubMed
Google Scholar
Kinoshita C, Okamoto Y, Aoyama K, Nakaki T. MicroRNA: a key player for the interplay of circadian rhythm abnormalities, sleep disorders and neurodegenerative diseases. Clocks Sleep. 2020;2(3):282–307.
Article
PubMed
PubMed Central
Google Scholar
Lloret MA, Cervera-Ferri A, Nepomuceno M, Monllor P, Esteve D, Lloret A. Is sleep disruption a cause or consequence of Alzheimer’s disease? Reviewing its possible role as a biomarker. Int J Mol Sci. 2020;21(3):1168.
Article
CAS
PubMed Central
Google Scholar
Taheri S, Mignot E. The genetics of sleep disorders. Lancet Neurol. 2002;1(4):242–50.
Article
CAS
PubMed
Google Scholar
Xu Y, Toh KL, Jones CR, Shin JY, Fu YH, Ptácek LJ. Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell. 2007;128(1):59–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Archer SN, Laing EE, Möller-Levet CS, van der Veen DR, Bucca G, Lazar AS, et al. Mistimed sleep disrupts circadian regulation of the human transcriptome. Proc Natl Acad Sci U S A. 2014;111(6):E682–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kervezee L, Cuesta M, Cermakian N, Boivin DB. Simulated night shift work induces circadian misalignment of the human peripheral blood mononuclear cell transcriptome. Proc Natl Acad Sci U S A. 2018;115(21):5540–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kervezee L, Cermakian N, Boivin DB. Individual metabolomic signatures of circadian misalignment during simulated night shifts in humans. PLoS Biol. 2019;17(6):e3000303.
Article
PubMed
PubMed Central
Google Scholar
Weaver MD, Vetter C, Rajaratnam SMW, O’Brien CS, Qadri S, Benca RM, et al. Sleep disorders, depression and anxiety are associated with adverse safety outcomes in healthcare workers: a prospective cohort study. J Sleep Res. 2018;27(6):e12722.
Article
PubMed
PubMed Central
Google Scholar
Smith MT, McCrae CS, Cheung J, Martin JL, Harrod CG, Heald JL, et al. Use of actigraphy for the evaluation of sleep disorders and circadian rhythm sleep-wake disorders: an American academy of sleep medicine clinical practice guideline. J Clin Sleep Med. 2018;14(7):1231–7.
Article
PubMed
PubMed Central
Google Scholar
Sack RL, Auckley D, Auger RR, Carskadon MA, Wright KP Jr, Vitiello MV, et al. Circadian rhythm sleep disorders: part II, advanced sleep phase disorder, delayed sleep phase disorder, free-running disorder, and irregular sleep-wake rhythm. An American academy of sleep medicine review. Sleep. 2007;30(11):1484–501.
Article
PubMed
PubMed Central
Google Scholar
Kim MJ, Lee JH, Duffy JF. Circadian rhythm sleep disorders. J Clin Outcomes Manag. 2013;20(11):513–28.
PubMed
PubMed Central
Google Scholar
American Academy of Sleep Medicine. The International Classification of Sleep Disorders. 2nd ed. Westchester: American Academy of Sleep Medicine; 2005. p. 1–31.
Google Scholar
Hida A, Kitamura S, Mishima K. Pathophysiology and pathogenesis of circadian rhythm sleep disorders. J Physiol Anthropol. 2012;31(1):7.
Article
PubMed
PubMed Central
Google Scholar
Regestein QR, Pavlova M. Treatment of delayed sleep phase syndrome. Gen Hosp Psychiatry. 1995;17(5):335–45.
Article
CAS
PubMed
Google Scholar
Crowley SJ, Acebo C, Carskadon MA. Sleep, circadian rhythms, and delayed phase in adolescence. Sleep Med. 2007;8(6):602–12.
Article
PubMed
Google Scholar
Wyatt JK. Delayed sleep phase syndrome: pathophysiology and treatment options. Sleep. 2004;27(6):1195–203.
Article
PubMed
Google Scholar
Sivertsen B, Pallesen S, Stormark KM, Bøe T, Lundervold AJ, Hysing M. Delayed sleep phase syndrome in adolescents: prevalence and correlates in a large population based study. BMC Public Health. 2013;13:1163.
Article
PubMed
PubMed Central
Google Scholar
Reid KJ, Chang AM, Dubocovich ML, Turek FW, Takahashi JS, Zee PC. Familial advanced sleep phase syndrome. Arch Neurol. 2001;58(7):1089–94.
Article
CAS
PubMed
Google Scholar
Paine SJ, Fink J, Gander PH, Warman GR. Identifying advanced and delayed sleep phase disorders in the general population: a national survey of New Zealand adults. Chronobiol Int. 2014;31(5):627–36.
Article
PubMed
Google Scholar
Curtis BJ, Ashbrook LH, Young T, Finn LA, Fu YH, Ptáček LJ, et al. Extreme morning chronotypes are often familial and not exceedingly rare: the estimated prevalence of advanced sleep phase, familial advanced sleep phase, and advanced sleep-wake phase disorder in a sleep clinic population. Sleep. 2019;42(10):zsz148.
Article
PubMed
PubMed Central
Google Scholar
Uchiyama M, Lockley SW. Non-24-hour sleep-wake rhythm disorder in sighted and blind patients. Sleep Med Clin. 2015;10(4):495–516.
Article
PubMed
Google Scholar
Abbott SM, Zee PC. Irregular sleep-wake rhythm disorder. Sleep Med Clin. 2015;10(4):517–22.
Article
PubMed
Google Scholar
Hohjoh H, Takasu M, Shishikura K, Takahashi Y, Honda Y, Tokunaga K. Significant association of the arylalkylamine N-acetyltransferase (AA-NAT) gene with delayed sleep phase syndrome. Neurogenetics. 2003;4(3):151–3.
Article
CAS
PubMed
Google Scholar
Katzenberg D, Young T, Finn L, Lin L, King DP, Takahashi JS, et al. A CLOCK polymorphism associated with human diurnal preference. Sleep. 1998;21(6):569–76.
Article
CAS
PubMed
Google Scholar
Logan RW, McClung CA. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat Rev Neurosci. 2019;20(1):49–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skene DJ, Lockley SW, Arendt J. Melatonin in circadian sleep disorders in the blind. Biol Signals Recept. 1999;8(1–2):90–5.
Article
CAS
PubMed
Google Scholar
Hulsegge G, Loef B, van Kerkhof LW, Roenneberg T, van der Beek AJ, Proper KI. Shift work, sleep disturbances and social jetlag in healthcare workers. J Sleep Res. 2019;28(4):e12802.
Article
PubMed
Google Scholar
Wittmann M, Dinich J, Merrow M, Roenneberg T. Social jetlag: misalignment of biological and social time. Chronobiol Int. 2006;23(1–2):497–509.
Article
PubMed
Google Scholar
Barion A, Zee PC. A clinical approach to circadian rhythm sleep disorders. Sleep Med. 2007;8(6):566–77.
Article
PubMed
PubMed Central
Google Scholar
Phillips AJK, Vidafar P, Burns AC, McGlashan EM, Anderson C, Rajaratnam SMW, et al. High sensitivity and interindividual variability in the response of the human circadian system to evening light. Proc Natl Acad Sci U S A. 2019;116(24):12019–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quante M, Mariani S, Weng J, Marinac CR, Kaplan ER, Rueschman M, et al. Zeitgebers and their association with rest-activity patterns. Chronobiol Int. 2019;36(2):203–13.
Article
PubMed
Google Scholar
Bobu C, Sandu C, Laurent V, Felder-Schmittbuhl MP, Hicks D. Prolonged light exposure induces widespread phase shifting in the circadian clock and visual pigment gene expression of the Arvicanthis ansorgei retina. Mol Vis. 2013;19:1060–73.
CAS
PubMed
PubMed Central
Google Scholar
Clark I, Landolt HP. Coffee, caffeine, and sleep: a systematic review of epidemiological studies and randomized controlled trials. Sleep Med Rev. 2017;31:70–8.
Article
PubMed
Google Scholar
Costa G. Sleep deprivation due to shift work. Handb Clin Neurol. 2015;131:437–46.
Article
PubMed
Google Scholar
Auger RR, Burgess HJ, Emens JS, Deriy LV, Thomas SM, Sharkey KM. Clinical Practice Guideline for the Treatment of Intrinsic Circadian Rhythm Sleep-Wake Disorders: advanced Sleep-Wake Phase Disorder (ASWPD), Delayed Sleep-Wake Phase Disorder (DSWPD), Non-24-Hour Sleep-Wake Rhythm Disorder (N24SWD), and Irregular Sleep-Wake Rhythm Disorder (ISWRD). An Update for 2015: An American Academy of Sleep Medicine Clinical Practice Guideline. J Clin Sleep Med. 2015;11(10):1199–236.
Article
PubMed
PubMed Central
Google Scholar
Taylor DJ, Wilkerson AK, Pruiksma KE, Williams JM, Ruggero CJ, Hale W, et al. Reliability of the structured clinical interview for DSM-5 sleep disorders module. J Clin Sleep Med. 2018;14(3):459–64.
Article
PubMed
PubMed Central
Google Scholar
Seow LSE, Verma SK, Mok YM, Kumar S, Chang S, Satghare P, et al. Evaluating DSM-5 insomnia disorder and the treatment of sleep problems in a psychiatric population. J Clin Sleep Med. 2018;14(2):237–44.
Article
PubMed
PubMed Central
Google Scholar
Pressman MR, Bornemann MC. The ICSD-3 NREM parasomnia section is evidence based resulting from international collaboration, consensus and best practices. J Clin Sleep Med. 2015;11(2):187–8.
Article
PubMed
PubMed Central
Google Scholar
Allada R, Bass J. Circadian mechanisms in medicine. N Engl J Med. 2021;384:550–61.
Article
CAS
PubMed
PubMed Central
Google Scholar