Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol Dis. 2018;109:249–57.
Article
CAS
Google Scholar
Marras C, Chaudhuri KR. Nonmotor features of Parkinson’s disease subtypes. Mov Disord. 2016;31(8):1095–102.
Article
CAS
Google Scholar
Tanaka M, Toldi J, Vécsei L. Exploring the etiological links behind neurodegenerative diseases: Inflammatory cytokines and bioactive kynurenines. Int J Mol Sci. 2020;21(7):2431.
Article
CAS
Google Scholar
McKinlay A, Grace RC, Dalrymple-Alford JC, Anderson TJ, Fink J, Roger D. Neuropsychiatric problems in Parkinson’s disease: comparisons between self and caregiver report. Aging Ment Health. 2008;12(5):647–53.
Article
Google Scholar
Barnum CJ, Tansey MG. Neuroinflammation and non-motor symptoms: the dark passenger of PD? Curr Neurol Neurosci Rep. 2012;12(4):350–8.
Article
CAS
Google Scholar
Menza M, Dobkin RD, Marin H, Mark MH, Gara M, Bienfait K, et al. The role of inflammatory cytokines in cognition and other non-motor symptoms of Parkinson’s disease. Psychosomatics. 2010;51(6):474–9.
CAS
PubMed
PubMed Central
Google Scholar
Scalzo P, Kümmer A, Cardoso F, Teixeira AL. Serum levels of interleukin-6 are elevated in patients with Parkinson’s disease and correlate with physical performance. Neurosci Lett. 2010;468(1):56–8.
Article
CAS
Google Scholar
Iarkov A, Barreto GE, Grizzell JA, Echeverria V. Strategies for the treatment of Parkinson’s disease: beyond dopamine. Front Aging Neurosci. 2020;12:4.
Article
CAS
Google Scholar
Tweedie D, Sambamurti K, Greig NH. TNF-α inhibition as a treatment strategy for neurodegenerative disorders: new drug candidates and targets. Curr Alzheimer Res. 2007;4(4):378–85.
Article
CAS
Google Scholar
Frankola AK, Greig HN, Luo W, Tweedie D. Targeting TNF-alpha to elucidate and ameliorate neuroinflammation in neurodegenerative diseases. CNS Neurol Disord Drug Targets. 2011;10(3):391–403.
Article
CAS
Google Scholar
Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30(12):1591–601.
Article
Google Scholar
Galton CJ, Erzinçlioglu S, Sahakian BJ, Antoun N, Hodges JR. A comparison of the Addenbrooke’s Cognitive Examination (ACE), conventional neuropsychological assessment, and simple MRI-based medial temporal lobe evaluation in the early diagnosis of Alzheimer’s disease. Cogn Behav Neurol. 2005;18(3):144–50.
Article
Google Scholar
Qassem T, Khater MS, Emara T, Rasheedy D, Tawfik HM, Mohammedin AS, et al. Normative data for healthy adult performance on the Egyptian-Arabic Addenbrooke’s Cognitive Examination III. MECP. 2015;22(1):27–36.
Google Scholar
Reitan RM. Validity of the Trail Making Test as an indicator of organic brain damage. Percept Mot Skills. 1958;8(3):271–6.
Article
Google Scholar
Poewe W. Non-motor symptoms in Parkinson’s disease. Eur J Neurol. 2008;15(1):14–20. https://doi.org/10.1111/j.1468-1331.2008.02056.x.
Monchi O, Hanganu A, Bellec P. Markers of cognitive decline in PD: the case for heterogeneity. Parkinson Relat Disord. 2016;24:8–14.
Article
Google Scholar
Petersen RC. Mild cognitive impairment as a diagnostic entity. J Int Med. 2004;256(3):183–94.
Article
CAS
Google Scholar
Wood KL, Myall DJ, Livingston L, Melzer TR, Pitcher TL, MacAskill MR, et al. Different PD-MCI criteria and risk of dementia in Parkinson’s disease: 4-year longitudinal study. NPJ Parkinsons Dis. 2016;2(1):1–8.
Article
Google Scholar
Ghazi-Saidi L. Visuospatial and executive deficits in Parkinson’s disease: a review. Acta Sci Neurol. 2020;3(4):8–26.
Magnard R, Vachez Y, Carcenac C, Krack P, David O, Savasta M, Boulet S, Carnicella S. What can rodent models tell us about apathy and associated neuropsychiatric symptoms in Parkinson’s disease? Transl Psychiatry. 2016;6(3): e753.
Article
CAS
Google Scholar
Muslimović D, Post B, Speelman JD, Schmand B. Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology. 2005;65(8):1239–45.
Article
Google Scholar
Brønnick K, Alves G, Aarsland D, Tysnes OB, Larsen JP. Verbal memory in drug-naive, newly diagnosed Parkinson’s disease. The retrieval deficit hypothesis revisited. Neuropsychol. 2011;25(1):114.
Article
Google Scholar
Pfeiffer HC, Løkkegaard A, Zoetmulder M, Friberg L, Werdelin L. Cognitive impairment in early-stage non-demented Parkinson’s disease patients. Acta Neurol Scand. 2014;129(5):307.
Article
CAS
Google Scholar
Kehagia AA, Barker RA, Robbins TW. Cognitive impairment in Parkinson’s disease: the dual syndrome hypothesis. Neurodegener Dis. 2013;11(2):79–92.
Article
Google Scholar
Barnum CJ, Tansey MG. Neuroinflammation and non-motor symptoms: the dark passenger of Parkinson’s disease? Curr Neurol Neurosci Rep. 2012;12(4):350–8.
Article
CAS
Google Scholar
Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, et al. In vivo imaging of microglial activation with [11C] (R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis. 2006;21(2):404–12.
Article
CAS
Google Scholar
Herrera AJ, Castano A, Venero JL, Cano J, Machado A. The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis. 2000;7(4):429–47.
Article
CAS
Google Scholar
Kouchaki E, Kakhaki RD, Tamtaji OR, Dadgostar E, Behnam M, Nikoueinejad H, et al. Increased serum levels of TNF-α and decreased serum levels of IL-27 in patients with Parkinson disease and their correlation with disease severity. Clin Neurol Neurosurg. 2018;166:76–9.
Article
Google Scholar
Wang XM, Zhang YG, Li AL, Long ZH, Wang D, Li XX, et al. Relationship between levels of inflammatory cytokines in the peripheral blood and the severity of depression and anxiety in patients with Parkinson’s disease. Eur Rev Med Pharmacol Sci. 2016;20(18):3853–6.
PubMed
Google Scholar
Koziorowski D, Tomasiuk R, Szlufik S, Friedman A. Inflammatory cytokines and NT-proCNP in PD patients. Cytokine. 2012;60(3):762–6.
Article
CAS
Google Scholar
Yang Y, Han C, Guo L, Guan Q. High expression of the HMGB1–TLR4 axis and its downstream signaling factors in patients with Parkinson’s disease and the relationship of pathological staging. Brain Behav. 2018;8(4): e00948.
Article
Google Scholar
Chan L, Chung CC, Chen JH, Yu RC, Hong CT. Cytokine profile in plasma extracellular vesicles of PDand the association with cognitive function. Cells. 2021;10(3):604.
Article
CAS
Google Scholar
Alrafiah A, Al-Ofi E, Obaid MT, Alsomali N. Assessment of the levels of level of biomarkers of bone matrix glycoproteins and inflammatory cytokines from Saudi Parkinson patients. Biomed Res Int. 2020. https://doi.org/10.1155/2019/2690205.
Article
PubMed
PubMed Central
Google Scholar
Lindqvist D, Kaufman E, Brundin L, Hall S, Surova Y, Hansson O. Non-motor symptoms in patients with Parkinson’s disease–correlations with inflammatory cytokines in serum. PLoS ONE. 2012;7(10): e47387.
Article
CAS
Google Scholar
Dufek M, Hamanova M, Lokaj J, Goldemund D, Rektorova I, Michalkova Z, et al. Serum inflammatory biomarkers in Parkinson’s disease. Parkinson Relat Disord. 2009;15:318–20.
Article
CAS
Google Scholar
Hassin-Baer S, Cohen OS, Vakil E, Molshazki N, Sela BA, Nitsan Z, et al. Is C-reactive protein level a marker of advanced motor and neuropsychiatric complications in Parkinson’s disease? J Neural Transm. 2011;118(4):539–43.
Article
CAS
Google Scholar
Tobinick E, Gross H, Weinberger A, Cohen H. TNF-alpha modulation for treatment of Alzheimer’s disease: a 6-month pilot study. Med Gen Med. 2006;8(2):25.
Google Scholar
Williams-Gray CH, Foltynie T, Brayne CE, Robbins TW, Barker RA. Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain. 2007;130(7):1787–98.
Article
CAS
Google Scholar
Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-α. Nature. 2006;440(7087):1054–9.
Article
CAS
Google Scholar
Doll DN, Rellick SL, Barr TL, Ren X, Simpkins JW. Rapid mitochondrial dysfunction mediates TNF-alpha-induced neurotoxicity. J Neurochem. 2015;132(4):443–51.
Article
CAS
Google Scholar
Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res. 2017;39(1):73–82.
Article
CAS
Google Scholar
Olmos G, Lladó J. Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm. 2014;2014:1–12. https://doi.org/10.1155/2014/861231.
Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, et al. Tumor necrosis factor-α induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem. 2006;281(30):21362–8.
Article
CAS
Google Scholar
Ye L, Huang Y, Zhao L, Li Y, Sun L, Zhou Y, et al. IL-1β and TNF-α induce neurotoxicity through glutamate production: a potential role for neuronal glutaminase. J Neurochem. 2013;125(6):897–908.
Article
CAS
Google Scholar