Guarnieri DJ, DiLeone RJ. MicroRNAs: a new class of gene regulators. Ann Med. 2008;40(3):197–208.
Article
CAS
PubMed
Google Scholar
Hatfield S, Ruohola-Baker H. microRNA and stem cell function. Cell Tissue Res. 2008;331(1):57–66.
Article
CAS
PubMed
Google Scholar
McNeill E, Van Vactor D. MicroRNAs shape the neuronal landscape. Neuron. 2012;75(3):363–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maciotta Rolandin S, Meregalli M, Torrente Y. The involvement of microRNAs in neurodegenerative diseases. Front Cell Neurosci. 2013;7:265.
Google Scholar
Rajgor D. Macro roles for microRNAs in neurodegenerative diseases. Non-coding RNA Res. 2018;3(3):154–9.
Article
CAS
Google Scholar
Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11(3):228–34.
Article
CAS
PubMed
Google Scholar
Latronico MV, Condorelli G. Therapeutic use of microRNAs in myocardial diseases. Curr Heart Fail Rep. 2011;8(3):193–7.
Article
CAS
PubMed
Google Scholar
Zhang Y, Wang Z, Gemeinhart RA. Progress in microRNA delivery. J Control Release. 2013;172(3):962–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harraz MM, Eacker SM, Wang X, Dawson TM, Dawson VL. MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci U S A. 2012;109(46):18962–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moon J-m, Xu L, Giffard RG. Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss. J Cereb Blood Flow Metab. 2013;33(12):1976–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009;40(5):e331–9.
Article
PubMed
Google Scholar
Liu W, Chen X, Zhang Y. Effects of microRNA-21 and microRNA-24 inhibitors on neuronal apoptosis in ischemic stroke. Am J Transl Res. 2016;8(7):3179–87.
CAS
PubMed
PubMed Central
Google Scholar
Li P, Shen M, Gao F, Wu J, Zhang J, Teng F, et al. An antagomir to microRNA-106b-5p ameliorates cerebral ischemia and reperfusion injury in rats via inhibiting apoptosis and oxidative stress. Mol Neurobiol. 2017;54(4):2901–21.
Article
CAS
PubMed
Google Scholar
Liu X, Li F, Zhao S, Luo Y, Kang J, Zhao H, et al. MicroRNA-124-mediated regulation of inhibitory member of apoptosis-stimulating protein of p53 family in experimental stroke. Stroke. 2013;44(7):1973–80.
Article
CAS
PubMed
Google Scholar
Sun L, Liu A, Zhang J, Ji W, Li Y, Yang X, et al. miR-23b improves cognitive impairments in traumatic brain injury by targeting ATG12-mediated neuronal autophagy. Behav. Brain Res. 2018;340:126–36.
CAS
Google Scholar
Sabirzhanov B, Zhao Z, Stoica BA, Loane DJ, Wu J, Borroto C, et al. Downregulation of miR-23a and miR-27a following experimental traumatic brain injury induces neuronal cell death through activation of proapoptotic Bcl-2 proteins. J Neurosci. 2014;34(30):10055–71.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu H, Xie R, Liu X, Shou J, Gu W, Gu S, et al. MicroRNA-494 improves functional recovery and inhibits apoptosis by modulating PTEN/AKT/mTOR pathway in rats after spinal cord injury. Biomed Pharmacother. 2017;92:879–87.
Article
CAS
PubMed
Google Scholar
Yi H, Huang Y, Yang F, Liu W, He S, Hu X. MicroRNA-182 aggravates cerebral ischemia injury by targeting inhibitory member of the ASPP family (iASPP). Arch Biochem Biophys. 2017;620:52–8.
Article
CAS
PubMed
Google Scholar
Wang P, Liang X, Lu Y, Zhao X, Liang J. MicroRNA-93 Downregulation Ameliorates Cerebral Ischemic Injury Through the Nrf2/HO-1 Defense Pathway. Neurochem Res. 2016;41(10):2627–35.
Article
CAS
PubMed
Google Scholar
Crack PJ, Taylor JM. Reactive oxygen species and the modulation of stroke. Free Radic Biol Med. 2005;38(11):1433–44.
Article
CAS
PubMed
Google Scholar
Zhao H, Tao Z, Wang R, Liu P, Yan F, Li J, et al. MicroRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion. Brain Res. 2014;1592:65–72.
Article
CAS
PubMed
Google Scholar
Jee MK, Jung JS, Choi JI, Jang JA, Kang KS, Im YB, et al. MicroRNA 486 is a potentially novel target for the treatment of spinal cord injury. Brain J Neurol. 2012;135(Pt 4):1237–52.
Article
Google Scholar
Liu da Z, Jickling GC, Ander BP, Hull H, Zhan X, Cox C, et al. Elevating microRNA-122 in blood improves outcomes after temporary middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab. 2016;36(8):1374–83.
Article
PubMed
CAS
Google Scholar
Huang S, Ge X, Yu J, Han Z, Yin Z, Li Y, et al. Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons. FASEB J. 2018;32(1):512–28.
Article
CAS
PubMed
Google Scholar
Li X-Q, Lv H-W, Wang Z-L, Tan W-F, Fang B, Ma H. MiR-27a ameliorates inflammatory damage to the blood-spinal cord barrier after spinal cord ischemia: reperfusion injury in rats by downregulating TICAM-2 of the TLR4 signaling pathway. J Neuroinflammation. 2015;12:25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou HJ, Wang LQ, Xu QS, Fan ZX, Zhu Y, Jiang H, et al. Downregulation of miR-199b promotes the acute spinal cord injury through IKKβ-NF-κB signaling pathway activating microglial cells. Exp Cell Res. 2016;349(1):60–7.
Article
CAS
PubMed
Google Scholar
Liu XS, Chopp M, Wang XL, Zhang L, Hozeska-Solgot A, Tang T, et al. MicroRNA-17-92 cluster mediates the proliferation and survival of neural progenitor cells after stroke. J Biol Chem. 2013;288(18):12478–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jee MK, Jung JS, Im YB, Jung SJ, Kang SK. Silencing of miR20a is crucial for Ngn1-mediated neuroprotection in injured spinal cord. Hum Gene Ther. 2012;23(5):508–20.
Article
CAS
PubMed
Google Scholar
Li Y, Mao L, Gao Y, Baral S, Zhou Y, Hu B. MicroRNA-107 contributes to post-stroke angiogenesis by targeting Dicer-1. Sci Rep. 2015;5(1):13316.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ge X-T, Lei P, Wang H-C, Zhang A-L, Han Z-L, Chen X, et al. miR-21 improves the neurological outcome after traumatic brain injury in rats. Sci Rep. 2014;4(1):6718.
Article
PubMed
PubMed Central
Google Scholar
Liu D, Huang Y, Jia C, Li Y, Liang F, Fu Q. Administration of antagomir-223 inhibits apoptosis, promotes angiogenesis and functional recovery in rats with spinal cord injury. Cell Mol Neurobiol. 2015;35(4):483–91.
Article
CAS
PubMed
Google Scholar
Ujigo S, Kamei N, Hadoush H, Fujioka Y, Miyaki S, Nakasa T, et al. Administration of microRNA-210 promotes spinal cord regeneration in mice. Spine. 2014;39(14):1099–107.
Article
PubMed
Google Scholar
Sepramaniam S, Armugam A, Lim KY, Karolina DS, Swaminathan P, Tan JR, et al. MicroRNA 320a functions as a novel endogenous modulator of aquaporins 1 and 4 as well as a potential therapeutic target in cerebral ischemia. J Biol Chem. 2010;285(38):29223–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sepramaniam S, Ying LK, Armugam A, Wintour EM, Jeyaseelan K. MicroRNA-130a represses transcriptional activity of aquaporin 4 M1 promoter. J Biol Chem. 2012;287(15):12006–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei GJ, An G, Shi ZW, Wang KF, Guan Y, Wang YS, et al. Suppression of MicroRNA-383 Enhances Therapeutic Potential of Human Bone-Marrow-Derived Mesenchymal Stem Cells in Treating Spinal Cord Injury via GDNF. Cell Physiol Biochem. 2017;41(4):1435–44.
Article
CAS
PubMed
Google Scholar
Swarbrick S, Wragg N, Ghosh S, Stolzing A. Systematic review of miRNA as biomarkers in Alzheimer’s disease. Mol Neurobiol. 2019;56(9):6156–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Angelucci F, Cechova K, Valis M, Kuca K, Zhang B, Hort J. MicroRNAs in Alzheimer’s disease: diagnostic markers or therapeutic agents? Front Pharmacol. 2019;10:665.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arshad AR, Sulaiman SA, Saperi AA, Jamal R, Mohamed Ibrahim N, Abdul Murad NA. MicroRNAs and target genes as biomarkers for the diagnosis of early onset of Parkinson disease. Front Mol Neurosci. 2017;10:352.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ardashirova NS, Fedotova EY, Illarioshkin SN. The Role of MicroRNA in the Pathogenesis and Diagnostics of Parkinson’s Disease. Neurochem J. 2020;14(2):127–32.
Article
CAS
Google Scholar
Goh SY, Chao YX, Dheen ST, Tan E-K, Tay SS-W. Role of microRNAs in Parkinson's Disease. Int J Mol Sci. 2019;20(22):5649.
Article
CAS
PubMed Central
Google Scholar
Xie Y, Chen Y. microRNAs: Emerging Targets Regulating Oxidative Stress in the Models of Parkinson's Disease. Front Neurosci. 2016;10:298.
Article
PubMed
PubMed Central
Google Scholar
Slota JA, Booth SA. MicroRNAs in neuroinflammation: implications in disease pathogenesis, biomarker discovery and therapeutic applications. Non-coding RNA. 2019;5(2):35.
Article
CAS
PubMed Central
Google Scholar
Yao L, Ye Y, Mao H, Lu F, He X, Lu G, et al. MicroRNA-124 regulates the expression of MEKK3 in the inflammatory pathogenesis of Parkinson’s disease. J Neuroinflammation. 2018;15(1):13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tripathi AK, Tiwari SK, Mishra P, Jain M. Emerging role of microRNAs in cerebral stroke pathophysiology. In: Patnaik R, Tripathi AK, Dwivedi A, editors. Advancement in the pathophysiology of cerebral stroke. Singapore: Springer Singapore; 2019. p. 123–37.
Chapter
Google Scholar
Tan KS, Armugam A, Sepramaniam S, Lim KY, Setyowati KD, Wang CW, et al. Expression profile of MicroRNAs in young stroke patients. PLoS One. 2009;4(11):e7689–e.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke. 2008;39(3):959–66.
Article
CAS
PubMed
Google Scholar
Vasudeva K, Munshi A. miRNA dysregulation in ischaemic stroke: Focus on diagnosis, prognosis, therapeutic and protective biomarkers. Eur J Neurosci. 2020;52(6):3610–27.
Article
PubMed
Google Scholar
Bansal A, Prathap R, Gupta S, Chaurasia A, Chaudhary P. Role of microRNAs in stroke recovery. J Family Med Prim Care. 2019;8(6):1850–4.
Article
PubMed
PubMed Central
Google Scholar
Brennan GP, Henshall DC. MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nat Rev Neurol. 2020;16(9):506–19.
Article
CAS
PubMed
Google Scholar
Bauer S, Schütz V, Strzelczyk A, Rosenow F. Is there a role for microRNAs in epilepsy diagnostics? Expert Rev Mol Diagn. 2020;20(7):693–701.
Article
CAS
PubMed
Google Scholar
Brennan GP, Henshall DC. microRNAs in the pathophysiology of epilepsy. Neurosci. Lett. 2018;667:47–52.
CAS
Google Scholar
Yuan J, Huang H, Zhou X, Liu X, Ou S, Xu T, et al. MicroRNA-132 Interact with p250GAP/Cdc42 pathway in the hippocampal neuronal culture model of acquired epilepsy and associated with epileptogenesis process. Neural Plast. 2016;2016:5108489.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hu K, Zhang C, Long L, Long X, Feng L, Li Y, et al. Expression profile of microRNAs in rat hippocampus following lithium–pilocarpine-induced status epilepticus. Neurosci Lett. 2011;488(3):252–7.
Article
CAS
PubMed
Google Scholar
McCoy CE. miR-155 dysregulation and therapeutic intervention in multiple sclerosis. Adv Exp Med Biol. 2017;1024:111–31.
Article
CAS
PubMed
Google Scholar
Piket E, Zheleznyakova GY, Kular L, Jagodic M. Small non-coding RNAs as important players, biomarkers and therapeutic targets in multiple sclerosis: a comprehensive overview. J Autoimmun. 2019;101:17–25.
Article
CAS
PubMed
Google Scholar
Karnell FG, Lin D, Motley S, Duhen T, Lim N, Campbell DJ, et al. Reconstitution of immune cell populations in multiple sclerosis patients after autologous stem cell transplantation. Clin Exp Immunol. 2017;189(3):268–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waschbisch A, Atiya M, Linker RA, Potapov S, Schwab S, Derfuss T. Glatiramer acetate treatment normalizes deregulated microRNA expression in relapsing remitting multiple sclerosis. PLoS One. 2011;6(9):e24604–e.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amoruso A, Blonda M, Gironi M, Grasso R, Di Francescantonio V, Scaroni F, et al. Immune and central nervous system-related miRNAs expression profiling in monocytes of multiple sclerosis patients. Sci Rep. 2020;10(1):6125.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohammed EM. Environmental influencers, microRNA, and multiple sclerosis. J Cent Nerv Syst Dis. 2020;12:1179573519894955.
Article
PubMed
PubMed Central
Google Scholar
Sheedy FJ. Turning 21: induction of miR-21 as a key switch in the inflammatory response. Front Immunol. 2015;6:19.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou Z, Xiong H, Xie F, Wu Z, Feng Y. A Meta-analytic review of the value of miRNA for multiple sclerosis diagnosis. Front Neurol. 2020;11:132.
Article
PubMed
PubMed Central
Google Scholar
Wu T, Chen G. miRNAs participate in MS pathological processes and its therapeutic response. Mediat Inflamm. 2016;2016:4578230.
Google Scholar
Koval ED, Shaner C, Zhang P, du Maine X, Fischer K, Tay J, et al. Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum Mol Genet. 2013;22(20):4127–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li C, Wei Q, Gu X, Chen Y, Chen X, Cao B, et al. Decreased glycogenolysis by miR-338-3p promotes regional glycogen accumulation within the spinal cord of amyotrophic lateral sclerosis mice. Front Mol Neurosci. 2019;12:114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rizzuti M, Filosa G, Melzi V, Calandriello L, Dioni L, Bollati V, et al. MicroRNA expression analysis identifies a subset of downregulated miRNAs in ALS motor neuron progenitors. Sci Rep. 2018;8(1):10105.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci. 2008;105(36):13421.
Article
CAS
PubMed
PubMed Central
Google Scholar
Emde A, Eitan C, Liou LL, Libby RT, Rivkin N, Magen I, et al. Dysregulated miRNA biogenesis downstream of cellular stress and ALS-causing mutations: a new mechanism for ALS. EMBO J. 2015;34(21):2633–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bañez-Coronel M, Porta S, Kagerbauer B, Mateu-Huertas E, Pantano L, Ferrer I, et al. A pathogenic mechanism in Huntington's disease involves small CAG-repeated RNAs with neurotoxic activity. PLoS Genet. 2012;8(2):e1002481.
Article
PubMed
PubMed Central
CAS
Google Scholar
Johnson R, Zuccato C, Belyaev ND, Guest DJ, Cattaneo E, Buckley NJ. A microRNA-based gene dysregulation pathway in Huntington's disease. Neurobiol Dis. 2008;29(3):438–45.
Article
CAS
PubMed
Google Scholar
Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL. The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. J Neurosci. 2008;28(53):14341–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE, et al. Altered microRNA regulation in Huntington's disease models. Exp Neurol. 2011;227(1):172–9.
Article
CAS
PubMed
Google Scholar
Wang L, Zhao C, Wu S, Xiao G, Zhuge X, Lei P, et al. Hydrogen Gas Treatment Improves the Neurological Outcome After Traumatic Brain Injury Via Increasing miR-21 Expression. Shock. 2018;50(3):308–15.
Article
CAS
PubMed
Google Scholar
Song J, Li N, Xia Y, Gao Z, Zou SF, Yan YH, et al. Arctigenin confers neuroprotection against mechanical trauma injury in human neuroblastoma SH-SY5Y cells by regulating miRNA-16 and miRNA-199a expression to alleviate inflammation. J Mol Neurosci. 2016;60(1):115–29.
Article
CAS
PubMed
Google Scholar
Li Z, Wang S, Li W, Yuan H. Ferulic acid improves functional recovery after acute spinal cord injury in rats by inducing hypoxia to inhibit microRNA-590 and elevate vascular endothelial growth factor expressions. Front Mol Neurosci. 2017;10:183.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang Q, Yang K, Li AY. Trimetazidine protects against hypoxia-reperfusion-induced cardiomyocyte apoptosis by increasing microRNA-21 expression. Int J Clin Exp Pathol. 2015;8(4):3735–41.
PubMed
PubMed Central
Google Scholar
Wen Y, Zhang X, Dong L, Zhao J, Zhang C, Zhu C. Acetylbritannilactone modulates microRNA-155-mediated inflammatory response in ischemic cerebral tissues. Mol Med. 2015;21(1):197–209.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Jiang HK, Li YP, Guo YP. Hydrogen sulfide protects spinal cord and induces autophagy via miR-30c in a rat model of spinal cord ischemia-reperfusion injury. J Biomed Sci. 2015;22(1):50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dong Y-F, Chen Z-Z, Zhao Z, Yang D-D, Yan H, Ji J, et al. Potential role of microRNA-7 in the anti-neuroinflammation effects of nicorandil in astrocytes induced by oxygen-glucose deprivation. J Neuroinflammation. 2016;13(1):60.
Article
PubMed
PubMed Central
CAS
Google Scholar