Skip to main content

Coexistence of anti-MuSK antibody-positive myasthenia gravis and rheumatoid arthritis



Rheumatoid arthritis (RA) is an autoimmune disease characterized with symmetric synovitis and occasional extra articular involvement; also, some neurologic disorders can be observed during the disease course. Myasthenia gravis (MG) is one of them and it is an autoimmune disease of neuromuscular junction. It is caused by autoantibodies against neuromuscular junction proteins: the nicotinic acetylcholine receptor (AChR) and the muscle specific tyrosine kinase (MuSK). Very few studies have reported the associated autoimmune disorders in MuSK-MG. Here, we present the first patient who has MuSK antibody-positive MG gravis and rheumatoid arthritis.

Case presentation

A 53-year-old woman with RA presented with fatigue and fluctuating proximal muscle weakness. Her electroneurophysiological investigation resembled MG. Her AchR antibody level was normal but MuSK antibodies were high. After the acute treatment with plasmapheresis which lead to complete recovery in myasthenic symptoms, she is following with mycophenolate mofetil.


Concomitant autoimmune disorders are common in the population. MG should be considered in patients with an autoimmune disorder and developing new neuromuscular weakness.


It is reported that at least one or more autoimmune disorders may affect 5% of the population [1]. Rheumatoid arthritis (RA) is one of the most common autoimmune rheumatic diseases characterized with synovial inflammation and joint destruction. An external trigger may induce an autoimmune reaction, leading to this chronic joint inflammation and destruction and some extraarticular organ involvement, including the skin, eye, heart, lung, renal, gastrointestinal, and nervous systems [2]. Both central and peripheral nervous system involvement may be observed during the disease course. Neurological associations in rheumatic diseases should be distinguished from them [3]. Myasthenia gravis (MG) is one of these associations and it is an autoimmune disease of neuromuscular junction. Clinically, MG is characterized by muscle weakness and rapid fatigue aggravated by exercise and relieved by rest. Anti-AChR autoantibodies are detected in about the 85–90% of MG patients and lead to impaired neuromuscular junction transmission. In the remaining MG patients, the second common antibody against at the neuromuscular junction is anti-MuSK. MuSK’s role is mediating AChR clustering at the postsynaptic membrane. MG patients with anti-MuSK antibodies are a distinct MG subgroup (MuSK-MG) with different clinical characteristics from MG patients with anti-AChR antibodies (AChR-MG) and different pathogenetic mechanisms. Most of the anti-MuSK antibodies are the non-complement-binding IgG4 subclass in contrast to anti-AChR antibodies which are complement-binding IgG1 [1, 4,5,6,7].

Here, we present a patient with her written consent who developed anti-MuSK antibody-positive myasthenia gravis after 10 years of follow-up and treatment with rheumatoid arthritis.

Case presentation

A 53-year-old woman presented to the university hospital neurology department with fatigue and fluctuating proximal muscle weakness. In her past medical history, the patient had also described recurrent joint pain and morning stiffness especially in the metacarpophalangeal and proximal interphalangeal joints which lasted for up to 1 h, for about 10 years. C-reactive protein (CRP) levels were elevated to 4.05 mg/dl (normal < 0.05 mg/dl), and erythrocyte sedimentation rate (ESR) was 23 mm/h (normal < 20 mm/h). Anti-nuclear antibodies (ANA) and antibodies to extractable nuclear antigens (ENA) were not identified. Rheumatoid factor (RF) and anti-cyclic citrullined peptide were all negative. Rheumatoid arthritis was diagnosed according to 2010 American College of Rheumatology/European League Against Rheumatism Classification Criteria for RA by using a combination of her clinical, laboratory, and imaging features [8]. She said that she only used methotrexate for her arthritis treatment until her recent admittance; the vital signs were normal. Her initial neurologic examination revealed only 4/5 strength in both upper and lower extremities proximals. All cranial nerves were intact. No sensory impairment was noticed. Deep tendon reflexes were bilaterally normoactive in all areas. Babinski was negative. Her electroneurophysiological investigation with the Natus Synergy, Ireland, 2010 system showed significant decremental response in low frequencies in repetitive stimulation of left trapezius muscle (Fig. 1a). Stimulating single-fibre electromyography in right extensor digitorum communis revealed significant jitter which represents neuromuscular junction disorder (Fig. 1b). Her anti-acetylcholine receptor (AChR) antibody level was normal but anti-muscle-specific tyrosine kinase (MuSK) antibodies were high (1.82 nmol/L; normal < 0.05 nmol/L). Her thorax computed tomography did not show any thymic pathology. Because of rapidly progression of the weakness to the neck flexors and bulbar muscles, we performed 5 sessions of plasmapheresis. After the acute treatment of the symptoms, we observed complete recovery in myasthenic symptoms and we started oral steroid which was reduced and switched by mycophenolate mofetil.

Fig. 1
figure 1

Left trapezius muscle and right extensor digitorum communis


Patients affected by one autoimmune disorder have a higher risk of developing a second one, and the prevalence is higher in females than in males. MG patients have an increased risk of other autoimmune disorders compared to the rest of the population without MG. Autoantibodies that are characteristic for autoimmune disorders can be found in MG patients without any of the clinical symptom [9]. Furthermore the prevalence of manifest autoimmune disorders in patients with MG has been reported in the ranges from 8.7 to 25% in the literature [4, 9,10,11]. In a systematic review, they stated that autoimmune thyroid disease was the most frequent autoimmune disorder, occurring in 10% of MG patients [9]. Other common autoimmune associates with MG are systemic lupus erythematosus (SLE), RA, dermatomyositis, polymyositis, and Addison’s disease [1]. MuSK antibodies are present in 10–70% of all MG patients without AChR antibodies. Only few studies have reported the associated autoimmune disorders in MuSK-MG. An association between MuSK-MG and SLE or relapsing-remitting multiple sclerosis (MS) has been suggested in previous reports [1, 12, 13].

Combined RA and MG occurrence has been calculated as 4% in a previous study with 75 MG patients [4]. From the literature review only one RA patient who is treated with penicillamine has been reported to have MuSK antibody positivity besides the AchR antibodies [7]. Our patient had not received any treatment with penicillamine which may become a triggering factor for her MG [14]. All the cases which have been reported in the literature have RA and AchR antibody-positive MG except the penicillamine-related case [4, 7, 15]. To our knowledge, our case is the first reported case who has RA and anti-MuSK antibody-positive MG. If we concentrate also on the disease progression of co-occurred autoimmune disorder, it is reported that MG presentation was generalized in all the patients who have RA like our patient. Additionally, the manifestations of RA were also classically less severe [4].

The pathogenesis for the co-occurrence of different varieties of autoimmune disorders is unclear; however, genetic, infectious, and immunological factors have been implicated, and abnormalities in both humoral and cell-mediated immunity have been described. Genetic studies on the susceptibility genes in autoimmune disorders reveal that is the most strong relationship at the human leukocyte antigen (HLA) locus [1, 4]. Particular role of the HLA-B8-DR3 and HLA DR14-DQ5 had been suggested in, respectively, MS and pemfigus association with MuSK-MG [5, 16,17,18]. CTLA4 gene polymorphisms are also reported as associated with MG and other autoimmune diseases such as type 1 diabetes mellitus, autoimmune thyroid disease, SLE, RA, and celiac disease [1].


Similar environmental triggers in a genetically susceptible individual may lead to the co-occurrence of different autoimmune diseases in the same patient. Concomitant MG should be considered in patients with an autoimmune disorder and developing new neuromuscular weakness.

Availability of data and materials

Available from corresponding author on reasonable request



Acetylcholine receptor


Anti-nuclear antibodies


C-reactive protein


Extractable nuclear antigens


Erythrocyte sedimentation rate


Human leukocyte antigen


Myasthenia gravis


Multiple sclerosis


Muscle specific tyrosine kinase


Rheumatoid arthritis


Rheumatoid factor


Systemic lupus erythematosus


  1. Nacu A, Andersen JB, Lisnic V, Owe JF, Gilhus NE. Complicating autoimmune diseases in myasthenia gravis: a review. Autoimmunity. 2015;48(6):362–8.

    Article  Google Scholar 

  2. Cojocaru M, Cojocaru IM, Silosi I, Vrabie CD, Tanasescu R. Extra-articular manifestations in rheumatoid arthritis. Maedica (Buchar). 2010;5(4):286–91.

    PubMed  PubMed Central  Google Scholar 

  3. Sofat N, Malik O, Higgens CS. Neurological involvement in patients with rheumatic disease. QJM. 2006;99(2):69–79.

    Article  CAS  Google Scholar 

  4. Tamer S, Gokce Gunes HN, Gokcal E, Yoldas TK. Coexistence of autoimmune diseases and autoantibodies in patients with myasthenia gravis. Neurol India. 2016;64:45–9.

    Article  Google Scholar 

  5. McConville J, Farrugia ME, Beeson D, Kishore U, Metcalfe R, Newsom-Davis J, et al. Detection and characterization of MuSK antibodies in seronegative myasthenia gravis. Ann Neurol. 2004;55(4):580–4.

    Article  CAS  Google Scholar 

  6. Tsiamalos P, Kordas G, Kokla A, Poulas K, Tzartos SJ. Epidemiological and immunological profile of muscle-specific kinase myasthenia gravis in Greece. Eur J Neurol. 2009;16(8):925–30.

    Article  CAS  Google Scholar 

  7. Poulas K, Koutsouraki E, Kordas G, Kokla A, Tzartos SJ. Anti-MuSK- and anti-AChR positive myasthenia gravis induced by d-penicillamine. J Neuroimmunol. 2012;250:94–8.

    Article  CAS  Google Scholar 

  8. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, et al. Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62(9):2569–81.

    Article  Google Scholar 

  9. Mao ZF, Yang LX, Mo XA, Qin C, Lai YR, He NY, et al. Frequency of autoimmune diseases in myasthenia gravis: a systematic review. Int J Neurosci. 2011;121:121–9.

    Article  Google Scholar 

  10. Fang F, Sveinsson O, Thormar G, Granqvist M, Askling J, Lundberg IE, et al. The autoimmune spectrum of myasthenia gravis: a Swedish population-based study. J. Intern. Med. 2014;277:594–604.

    Article  Google Scholar 

  11. Christensen PB, Jensen TS, Tsiropoulos I, Sørensen T, Kjaer M, Højer-Pedersen E, et al. Associated autoimmune diseases in myasthenia gravis. A population-based study. Acta Neurol. Scand. 1995;91:192–5.

    Article  CAS  Google Scholar 

  12. Nakamura H, Usa T, Motomura M, Ichikawa T, Nakao K, Kawasaki E, et al. Prevalence of interrelated autoantibodies in thyroid diseases and autoimmune disorders. J. Endocrinol. Invest. 2008;31:861–5.

    Article  CAS  Google Scholar 

  13. Sylvester J, Purdie G, Slee M, Gray JX, Burnet S, Koblar S. Muscle-specific kinase antibody positive myaesthenia gravis and multiple sclerosis co-presentation: a case report and literature review. J. Neuroimmunol. 2013;264:130–3.

    Article  CAS  Google Scholar 

  14. Schiavo AL, Guerrera V, Migliaresi S, Lombardi ML, Ruocco V. Coexistence of rheumatoid arthritis, myasthenia gravis, and pemphigus superficialis. JEADV. 1995;5(2):191–4.

    Google Scholar 

  15. Chai JY, Jeon CH, Cha HS, Kim BJ, Koh EM. 4 cases of myasthenia gravis in patients with rheumatoid arthritis. Korean J Intern Med. 2006;71(3):1147–52.

    Google Scholar 

  16. Fang F, Sveinsson O, Thormar G, Grangvist M, Askling J, Lundberg IE, et al. The autoimmune spectrum of myasthenia gravis: a Swedish population-based study. J Intern Med. 2015;277(5):594–604.

    Article  CAS  Google Scholar 

  17. Niks EH, Kuks JB, Roep BO, Haasnoot GW, Verduijn W, Ballieux BE, et al. Strong association of MuSK antibody-positive myasthenia gravis and HLA-DR14-DQ5. Neurology. 2006;66:1772–4.

    Article  CAS  Google Scholar 

  18. Niks EH, Kuks JB, Verschuuren JJ. Epidemiology of myasthenia gravis with anti muscle specific kinase antibodies in The Netherlands. J. Neurol. Neurosurg. Psychiatry. 2007;78:417–8.

    Article  Google Scholar 

Download references


Not applicable



Author information

Authors and Affiliations



Conceptualization: AE and MT. Data curation: AE, MT, and SEM. Methodology: AE, MT, and SEM. Project administration: AE and MT. Resources: AE, MT, and SEM. Supervision: AE and MT. Writing—original draft: AE and MT. Writing—review and editing: AE, MT, and SEM. All authors have read and approved the manuscript

Corresponding author

Correspondence to Amber Eker.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Written informed consent was obtained from the patient for publication of this case report.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eker, A., Tınazlı, M. & Mut, S.E. Coexistence of anti-MuSK antibody-positive myasthenia gravis and rheumatoid arthritis. Egypt J Neurol Psychiatry Neurosurg 56, 91 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: