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Abstract 

Background:  Although migraine phenotype has been widely described, the explanation of migraine pathophysi-
ology still has a gap that might be partly bridged by neuroimaging investigations. The aim of the study is to assess 
volumetric brain changes in migraineurs compared with controls, and in episodic migraine in comparison to chronic 
type. Structural brain changes in migraineurs (with and without aura) were assessed by an automated segmenta-
tion method (Free Surfer). T1-weighted MRIs of 25 migraineurs (14 diagnosed as episodic type and 11 diagnosed as 
chronic migraine) and 25 headache-free controls were evaluated and processed.

Results:  Migraine patients had significant reduction of the volume of total brain, grey matter, brain stem, cerebel-
lum, basal ganglia, thalamus, hippocampus and amygdala in comparison to control subjects. Patients with chronic 
migraine had significant reduction in volume of total brain, grey matter, cerebellum and frontal lobe thickness in 
comparison to those with episodic migraine.

Conclusion:  Migraineurs showed volumetric brain changes mainly in areas related to central processing of pain and 
in areas specific for migraine (such as brain stem) when compared to healthy controls. Chronic migraineurs showed 
significant reduction in grey matter, in areas involved in processing of pain, cognition and multisensory integration 
versus patients with episodic migraine, which adds insight into the pathophysiology of migraine as a progressive 
disorder that may have long-term impacts on the brain as regards structure and function.
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Background
Migraine is reported as a widespread neurologic disor-
der; it is distinguished by attacks of unilateral headache of 
throbbing character associated with autonomic dysfunc-
tion. Nearly 33% of migraine patients have a short-lived 
neurological symptom, the so-called aura. It is identified 
by a variant called migraine with aura. [1] Traditionally 
migraine is reported as a disorder that has no long-term 
impacts on the brain. Evolving data report that migraine 
patients at an increased risk of developing silent brain 
lesions, such as white matter lesions, ischemic like lesions 
and volumetric changes in both grey and white matter 

found on MRI. These changes are found to be increasing 
along with increased number of migraine attacks, which 
represent a form of the disorder’s anatomic progression. 
[2, 3]

Migraine is considered as a continuum of illness which 
is composed of chronic and episodic forms. The classi-
cal episodic type of the disease usually transforms into a 
chronic form and the reverse is also possible. Annually, it 
is reported 3% of patients who have an episodic migraine 
progress into chronic migraine.

There are many risk factors associated with transfor-
mation into chronic migraine; they are age, head injury, 
low level of education, obesity, high baseline attack fre-
quency, snoring, overuse of specific categories of medica-
tions, caffeine, and stressful life events. [4]

Upon transformation into chronic type, headache 
attacks become frequent, being more disabling and 
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being less responsive to therapy. Although it is known 
that chronic migraine is generally evolved from episodic 
form, emerging epidemiologic proof supports distinctive 
underlying pathophysiology of the two states of migraine. 
The chronic migraine pathophysiology has not been 
fully elucidated. However, both structural and functional 
abnormalities in pain processing regions, sensitization 
of the trigeminal system, cortical hyper-excitability and 
excessive release of vasoactive peptides have been given 
as the underlying pathological mechanisms responsible 
for chronic migraine. [5]

This study aims to investigate the total and segmental 
changes of brain volume in migraine patients in com-
parison to healthy controls, and in patients with episodic 
migraine in comparison to chronic type of migraine and 
correlate the results with headache duration and fre-
quency using automated tissue segmentation technique.

Methods
This is a case–control comparative study conducted on 
25 patients who complained of migraine (18 females, 
7 males); their ages ranged from 18 to 40  years. All of 
them were recruited from neurology outpatient clinic 
of Al Zahraa University Hospital, Cairo, Egypt. Eight-
een patients achieved the criteria of international 

classification of headache disorders (ICHD-3beta) [6] for 
migraine without aura and seven patients for migraine 
with aura. There was no history of chronic diseases or 
active systemic diseases, psychiatric disorders or any 
other neurological disorders rather than migraine.

According to the attack rate per month, the patients 
were divided into two groups: 14 patients who suffered 
from episodic migraine and 11 patients who suffered 
from chronic migraine.

Twenty-five healthy persons are randomly selected as 
a control group who were matched for gender and age; 
all of them had no history of any systemic, psychiatric or 
neurological disorders.

An informed written consent was taken from all 
patients and controls.

A form for assessment of headache has been completed 
by all patients which include demographic data regard-
ing age, gender, occupation and character of migraine 
including headache duration and frequency of attacks, 
character and location of pain, associated with aura 
or not. Finally headache-related disability have been 
recorded according to Migraine Disability Assessment 
Scale (MIDAS). It was developed to measure migraine-
related disability in 3 domains: school/work, household 
work and family social or leisure activities. The score is 

Table 1  Clinical data of patients group

n %

Type of migraine Migraine with aura 7/25 28.0

Migraine without aura 18 /25 72.0

Chronicity of migraine Chronic 11 44

Episodic 14 56

Site of migraine Unilateral 16 /25 64.0

Bilateral 9 / 25 36.0

Frequency of migraine attacks/month Range 1.00–12.00

Mean ± SD 6.64 ± 3.28

Duration of migraine/year Range 1.00–12.00

Mean ± SD 5.12 ± 2.95

Beck depression inventory score Range 2.0–23.0

Mean ± SD 12.28 ± 6.38

Border 4 16.0

Mild 7 28.0

Moderate 4 16.0

Normal 10 40.0

BCAT Brief Cognitive Assessment Tool Range 40.0–50.0

Mean ± SD 45.3 ± 2.92

MCI 21 84.0

Normal 4 16.0

MIDAS Migraine Disability Assessment Scale Mild 8 16.0

Moderate 10 20.0

Severe 7 14.0
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quantified by the total number of days of activity limita-
tions due to migraine in the past 3 months [7]

The Beck Depression Inventory (BDI) was applied to 
all participants to assess if anyone has depression and its 
severity [8] and Brief Cognitive Assessment tool (BACT) 
were conducted to all persons in control group and 
patients to assess the cognitive function for everyone. 
It is a multi-domain cognitive instrument that assesses 
orientation, verbal recall, visual recognition, attention, 
abstraction, language, executive functions and visuo-spa-
tial processing. [9]

As regards image acquisition and processing, high-
resolution MRI images using Gyro scan Integra 
1.5-T MR, Philips, USA. T1-weighted axial images, 
T1-weighted sagittal, T2-weighted axial images and 

axial fluid-attenuated inversion recovery (FLAIR) 
images have obtained to both patients and control 
group. Also, T1-weighted sagittal 3D with field of view 
(250 × 250× 156) mm thick, Voxel size (11 × 11× 0.6) 
mm, TR: shortest, TE: shortest, reconstruction matrix 
240, 260, sagittal slices with no gap to identify GM and 
WM density. MRI images were managed with Free 
Surfer in each individual’s native space and this method 
involves motion correction [10] of various volumetric 
T1-weighted images (if other than one was obtainable), 
exclusion of non-brain tissue by means of a hybrid water-
shed/surface deformation technique [11], subdivision of 
subcortical white matter and deep grey matter volumetric 
structures containing hippocampus, amygdala, caudate, 
putamen, ventricles) [12, 13] intensity normalization, 
[14] tessellation of the grey matter white matter mar-
gin, automated topology correction [15, 16], and surface 
deformation following intensity gradients to optimally 
put the grey/white and grey/cerebrospinal fluid bor-
ders at the location where the greatest shift in intensity 
defines the transition to the other tissue class. [17–19] 
This method uses both intensity and continuity informa-
tion from the whole three-dimensional MR volume in 
segmentation and deformation processes to yield repre-
sentations of cortical thickness, calculated as the nearest 
distance from the grey/white boundary to the gray/CSF 
margin at each vertex on the tessellated surface. [19] The 
regions of interest (ROI) include cerebral and cerebel-
lar grey and white matters, in addition to other specific 
structures like the basal ganglia, the limbic region (amyg-
dala, hippocampus), brainstem and thalamus.

Statistical analysis: All data have been collected, 
reviewed and inserted to the Statistical Package for 
Social Science (IBM SPSS) version 20. It was presented 
as numbers and percentages for the qualitative data, 

Table 2  Comparison between patients and control groups as regards total brain volumetry (mm3) and cortical thickness parameters 
(mm)

**p-value < 0.001 highly significant

Patients group (n = 25) Control group (n = 25) Independent t-test

Mean SD Mean SD t P-value

Total brain volume 1,011,334.52 106,858.78 1,183,762.92 115,780.99 − 5.472  < 0.001**

 Cortex volume 432,924.76 48,463.31 501,448.68 50,811.57 − 4.879  < 0.001**

 Left cortex volume 216,000.84 23,741.19 250,407.44 25,410.40 − 4.947  < 0.001**

 Right cortex volume 216,923.92 24,793.39 251,041.16 25,522.06 − 4.794  < 0.001**

 Cerebral white matter volume 406,659.44 56,158.33 480,763.64 70,233.15 − 4.120  < 0.001**

Left cerebral white matter volume 203,287.80 27,722.18 241,162.76 35,458.76 − 4.207  < 0.001**

Right cerebral white matter volume 203,371.72 28,456.51 239,600.92 34,874.58 − 4.024  < 0.001**

Total gray volume 581,104.28 59,970.81 675,236.16 60,018.95 − 5.547  < 0.001**

Right cortical thickness 2.47 0.13 2.47 0.12 − 0.003 0.997

Left cortical thickness 2.47 0.12 2.47 0.14 − 0.027 0.979

Fig. 1  Comparison between patients’ group and control group with 
regard to bilateral cortical volume and cerebral white matter volume
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mean, standard deviations and ranges for the quantita-
tive data with parametric distribution and median with 
inter-quartile range (IQR) for the quantitative data with 
non-parametric distribution. Chi-square test was used to 
compare between two groups with qualitative data and 

Fisher exact test was used instead of the Chi-square test 
when the expected count in any call found less than 5. 
Independent t-test was used to link between two clusters 
with quantitative data and parametric distribution and 
Mann–Whitney test was used in the judgment between 

Table 3  Comparison between patients and control groups as regards segmental brain volumetry (mm3) and thickness (mm) 
parameters

*p-value< 0.05 significant

**p-value < 0.001 highly significant

Patients group (n = 25) Control group (n = 25) Independent t-test

Mean SD Mean SD t P-value

Brain stem volume 18,889.66 2076.85 21,542.80 3296.72 − 3.405 0.001**

Left cerebellar volume 59,733.59 5961.32 69,882.37 9922.14 − 4.384  < 0.001**

Right cerebellar volume 59,593.91 5603.56 70,001.30 9866.33 − 4.586  < 0.001**

Left caudate and putamen 7863.20 999.08 8732.90 843.12 − 3.326 0.002*

Right caudate and putamen 7948.74 949.98 8883.68 909.17 − 3.555 0.001**

Left thalamus volume 7006.94 821.16 8458.20 985.53 − 5.657  < 0.001**

Right thalamus volume 6667.95 677.12 8185.10 1148.66 − 5.689  < 0.001**

Left hippocampus volume 3562.09 416.73 4167.36 438.15 − 5.005  < 0.001**

Right hippocampus volume 3712.36 424.28 4306.22 503.63 − 4.509  < 0.001**

Left amygdala volume 1306.73 178.70 1611.09 199.97 − 5.675  < 0.001**

Right amygdala volume 1435.52 262.29 1838.46 240.20 − 5.665  < 0.001**

Left cingulate thickness 2.55 0.14 2.55 0.14 − 0.117 0.908

Right cingulate thickness 2.53 0.16 2.58 0.15 − 1.093 0.280

Left frontal lobe thickness 2.60 0.16 2.57 0.16 0.717 0.477

Right frontal lobe thickness 2.57 0.16 2.57 0.15 0.091 0.928

Right postcentral thickness 2.02 0.13 2.05 0.13 − 0.912 0.366

Left postcentral thickness 2.03 0.13 2.08 0.13 − 1.331 0.189

 Right superior parietal thickness 2.12 0.15 2.17 0.16 − 1.107 0.274

 Left superior parietal thickness 2.15 0.14 2.17 0.16 − 0.445 0.658

Table 4  Comparison between chronic and episodic migraine patients as regards total brain volumetry (mm3) and cortical thickness 
(mm) parameters

*p-value < 0.05 significant

WM white matter

GM grey matter

Chronic (n = 11) Episodic (n = 14) Independent t-test

Mean SD Mean SD t p-value

Total brain volume 960,994.82 75,150.63 1,050,887.14 113,611.45 − 2.259 0.034*

 Cortex volume 408,531.55 32,686.47 452,090.86 51,138.20 − 2.453 0.022*

 Left cortex volume 203,836.09 15,641.45 225,558.86 25,075.47 − 2.509 0.020*

 Right cortex volume 204,695.18 17,166.27 226,532.21 26,119.34 − 2.391 0.025*

 Cerebral volume 387,737.00 41,038.96 421,527.07 63,132.92 − 1.535 0.138

Left cerebral WM volume 194,107.55 20,419.03 210,500.86 31,156.74 − 1.506 0.146

Right cerebral WM volume 193,629.36 20,646.01 211,026.43 31,994.71 − 1.562 0.132

Total GM volume 550,143.82 37,161.32 605,430.36 64,257.68 − 2.533 0.019*

Right cortical thickness 2.44 0.10 2.49 0.14 − 1.159 0.259

Left cortical thickness 2.43 0.09 2.49 0.14 − 1.277 0.214
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Table 5  Comparison between chronic and episodic migraine patients as regards segmental brain volumetry (mm3) and thickness 
(mm) parameters

*p-value< 0.05 significant

Chronic (No. = 11) Episodic (No. = 14) Independent t-test

Mean SD Mean SD t P-value

Brain stem volume 18,344.76 1401.35 19,317.80 2450.27 − 1.172 0.253

Left cerebellar volume 44,289.44 2610.20 49,574.49 5126.28 − 3.108 0.005*

Right cerebellar volume 45,006.34 2648.00 49,703.61 4772.72 − 2.922 0.008*

Left caudate and putamen 4586.02 479.66 4746.25 641.24 − 0.690 0.497

Right caudate and putamen 4556.53 512.77 4737.00 558.06 − 0.831 0.414

Left thalamus volume 6869.73 754.70 7114.75 882.20 − 0.733 0.471

Right-thalamus volume 6567.45 598.37 6746.92 745.50 − 0.650 0.522

Left-hippocampus volume 3525.04 282.80 3591.21 506.96 − 0.387 0.702

Right-hippocampus volume 3693.85 316.65 3726.89 504.67 − 0.189 0.851

Left-amygdala volume 1240.89 129.43 1358.46 198.79 − 1.696 0.103

Right amygdala volume 1356.15 126.16 1497.87 324.42 − 1.365 0.185

Left cingulate thickness 2.55 0.16 2.55 0.13 0.089 0.930

Right cingulate thickness 2.52 0.15 2.54 0.16 − 0.293 0.772

Left frontal lobe thickness 2.62 0.22 2.82 0.21 − 2.375 0.026*

Right frontal lobe thickness 2.56 0.15 2.78 0.22 − 2.902 0.008*

Right post central thickness 2.01 0.12 2.03 0.15 − 0.218 0.829

Left post central thickness 2.00 0.11 2.05 0.13 − 1.067 0.297

Right superior parietal thickness 2.09 0.13 2.14 0.16 − 0.752 0.460

Left superior parietal thickness 2.13 0.09 2.17 0.17 − 0.824 0.418

Fig. 2  Negative significant correlation between frequency of attacks and right frontal pole thickness
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two clusters with quantitative data and non-parametric 
distribution.

The analysis of variance (ANOVA) and Kruskal–Wallis 
tests have been used to compare between other clusters 
with quantitative data and non-parametric distribution. 
We used Spearman correlation coefficient to assess the 
significant relation between two quantitative parameters 
in the same group.

Results
Twenty-five patients with migraine headache (7 men 
28% and 18 women 72%) with mean age (31.00 ± 6.93) as 
patients group and twenty-five subjects (8 men 32.00% 
and 17 women 68.00%) with no symptoms of migraine as 
control group, mean age (30.88 ± 6.79) with age and sex-
matched between two groups.

Seven patients fulfilled criteria of migraine with aura 
(28.0%) with mean age (32.57 ± 6.80) and 18 patients ful-
filled criteria of migraine without aura (72.0%) with mean 
age (30.38 ± 7.08) (Table 1).

The patients group was divided into another two sub-
groups: 14 patients diagnosed as episodic migraine (56%) 
with mean age (28.35 ± 6.87) and 11 patients diagnosed 

as chronic migraine (44.0%) with mean age (34.36 ± 5.62), 
with statistically significant difference between two 
subgroups as patients with CM were older. No one of 
the patients was taking medications for prophylaxis of 
migraine during the study.

None of the patients had severe depression or severe 
cognitive impairment, as shown in Table 1

As regards MRI, only 3 patients (12%), (2 with CM and 
1 with episodic migraine) had white matter hyper intensi-
ties in T2-weighted and FLAIR images.

Differences between patients and healthy controls as 
regards total brain volume, cortex volume, cerebral white 
matter volume and total grey matter volume (in mm 3) 
and cortical thickness (in mm) by Free-Surfer are shown 
in Table 2 and Fig. 1.

As regards segmental brain volume, differences 
between migraine patients and healthy controls in the 
volume of brain stem, bilateral cerebellum, thalamus-
proper, caudate, putamen, hippocampus and amygdala 
are represented in Table  3. Also, comparison between 
patients and controls as regards cingulate, frontal lobe 
and parietal lobe thickness is shown in Table 3.

Fig. 3  Negative significant correlation between frequency of attacks and left lateral orbitofrontal thickness
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In addition, differences of brain volumetric param-
eters (total brain volume, right and left cortex volume, 
and total gray matter volume) in patients with chronic 
migraine in comparison to those with episodic migraine, 
are shown in Table 4

Differences between patients with chronic migraine 
and patients with episodic migraine as regards cortical 
thickness, cerebral white matter volume, are shown in 
Table 4.

As regards segmental brain volumetric parameters, dif-
ferences between chronic migraine patients and episodic 
migraine patients are shown in Table 5.

There was no significant correlation between total 
brain volumetric parameters and duration of the disease 
or frequency of attacks in patients group.

However, correlations between frequency of attacks 
and both right frontal pole thickness and left lateral 
orbitofrontal thickness are shown in Figs. 2, 3

Correlations between the disease duration and both 
left medial orbitofrontal thickness and right caudal mid-
dle frontal thickness are represented in Figs. 4, 5.

Figure 6 shows abnormalities of left cortical thickness 
in a patient with migraine through Free-surfer software.

Discussion
Volumetric MRI remains a research tool in evaluating 
migraine patients. The most important finding of this 
study is that migraine patients had statistically significant 
decreased brain volume in comparison to age and sex-
matched control subjects regarding total brain volume 
(cortex volume, cerebral white matter volume, and total 
grey matter volume) and segmental brain volume (the 
cerebellum, brainstem, thalamus-proper, caudate and 
putamen volume, hippocampus and amygdala volume).

In accordance with our results, Gudmundsson and col-
leagues, [20] found that migraineurs had reduced total 
brain volumetry, white matter volume, and grey matter 
volume compared with controls. In addition, our results 
are in agreement with Jia and Yu [21], who found in a 
meta-analysis of 8 clinical studies for structural changes 
that whole brain voxel-based morphometry (VBM) 
detected consistent widespread reduction in the grey 
matter volume (GMV) in migraine.

Proof has revealed that cerebellum is involved in emo-
tion, cognition, and learning beside its role in motor and 
coordination.[22, 23] Furthermore, it has been demon-
strated that cerebellum has a role in reaction to painful 

Fig. 4  Significant negative correlation between the disease duration and right caudal middle frontal thickness
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stimulations [23–26], however the precise role the cer-
ebellum plays in processing of pain and its job as regards 
painful disorders is not well defined. Cerebellar acti-
vation during migraine occurs at a time of trigeminal 
nociception and in the course of a migraine attack. [27, 
28] Moreover, further cerebellar silent ischemic lesions 
were present in the migraine patients. [29, 30] Some 
studies stated cerebellar volume alterations in migraine 
patients and the results were correlated with frequency of 
attacks. In contradiction to our study, two studies indi-
cated gray matter volume increase of the right cerebel-
lar hemisphere [31], which was associated with greater 
frailty. [32] Another two studies, in accordance with our 
study, revealed diminished cerebellar volume in episodic 
migraine patients [3] and in CM patients compared to 
healthy individuals. [33]

The basal ganglia are valuable grey matter structures 
that play a role in integrating motor, sensory, motivation, 
learning and cognitive functions.[34] Earlier revisions 
have found volume alterations, functional connectivity 
alterations, and iron deposits [35–37] in the basal ganglia 
of migraine patients. Our study demonstrated decreased 
volume of caudate and putamen supporting the role of 

the basal ganglia in migraine patients as was found in 
previous studies. [38, 39]

Additional deep grey matter structure which is impor-
tant in migraine is the thalamus, which is in charge of 
pain processing, regulation of sleep–wake cycle, alert-
ness, cognitive functions, and processing of visual infor-
mation. [40] The reduction in volume of thalamic nuclei 
[38] or thalamic microstructural alteration [41] has been 
reported in migraineurs in some studies and in our pre-
sent study.

The trigeminal pathway is present in the brain stem. 
Some studies including our current study showed dimin-
ished brain stem grey matter volume in migraine patients 
[42] and CM patients. [33] However in comparison to 
our study, others demonstrated volume increase of brain 
stem and sub-regions in migraine with aura [43] and in 
medication-overuse headache.[44] In our study, There 
was significant reduction in the volume of both amyg-
dala and hippocampus in migraine patients in com-
parison to controls. The hippocampus, as a portion of 
the limbic system, has well-known function in learning, 
memory creation, pain processing, pain-associated atten-
tion and anxiety as well as in stress reactions [45]. Many 

Fig. 5  Significant negative correlation between the disease duration and left medial orbitofrontal thickness
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previous studies explored the volume of hippocampus 
in migraineurs.[46–51] Hubbard and colleagues, [47] 
demonstrated left hippocampal enlargement in patients 
with migraine in comparison to healthy controls, while 
Chong and colleagues [46], reported the reverse. With 
follow-up for one year, the volume of hippocampus was 
reduced in patients diagnosed as episodic migraine. [51] 
Both increased and decreased volume of hippocampus 
were reported in migraine. Numerous studies’ conflicting 
results of hippocampal volume alterations in migraine 
patients may be because of different sample characteris-
tics and study designs.

The mechanism of chronicity in migraine is not com-
pletely clarified. Structural and functional imaging 
studies of CM have found changes in the cortex, basal 
ganglia, brain stem and hypothalamus, regions that are 
included in modulation of pain. Sometimes these altera-
tions are related to headache rate and/or duration, but 
other changes may be associated with cognitive dys-
function, insomnia, mood and emotion. [52–58] These 
changes reflect the central nervous system plasticity that 
occurs in chronic migraine, but whether these alterations 

represent the etiology or the consequences of chronicity 
were not identified.

In our current research, there were valuable total brain 
volume reduction, cortex, white matter, cerebellum and 
frontal lobe thickness in CM patients in comparison to 
those with episodic migraine. Voxel-based morphom-
etry revisions usually established decrease in volume or 
thickness of frontal cortex in chronic migraineurs.[3, 
38, 52, 59, 60] The prefrontal cortex has an important 
role in pain modulation and cognitive processing of pain 
through its connections with many regions of the brain, 
like the hippocampus, insular cortex, parietal lobe, thala-
mus, amygdala, basal ganglia and periaqueductal grey 
matter [61]. The volume reduction of the prefrontal cor-
tex in patients with chronic migraine may be explained 
by impairment of function [62] and defective pain inhi-
bition, which could stimulate migraine attacks and help 
migraine chronicity. [63, 64]

In this study, we found negative important associa-
tion between period of the disease and both left medial 
orbitofrontal thickness and right caudal middle fron-
tal thickness. Moreover, nearby was negative significant 
correlation between frequency of attacks and both right 
frontal pole thickness and left lateral orbitofrontal thick-
ness. Our results agree with Chen and colleagues [64], 
who found that headache rate (headache days per month) 
was inversely correlated with the right frontal pole vol-
ume, right lateral orbital gyrus and left and right medial 
frontal lobes. However, they reported that no major 
association was present between other disease clinical 
parameters and brain volume in other regions. The way 
of remodeling of migraine brain is uncertain, however; 
it may be associated with variations as regards neurons, 
glial cells, number and size and their synapses, and differ-
ent interstitial fluids or blood flow [65] perhaps resulting 
from neural moodiness, neuro-inflammation, vascular 
tightening or enlargement and neuronal degeneration.

The limitations of current study were, the lesser 
number of patients, it was a cross-sectional study and 
we might not identify if chronicity produced volume 
changes or that volume changes is the cause of chronic-
ity. Another limitation caused by heterogenous nature 
of patient population, counting migraine with aura and 
without aura.

Conclusions
Migraineurs showed volumetric brain changes mainly in 
areas related to central processing of pain and in areas 
specific for migraine (such as brain stem) when com-
pared to healthy controls. Chronic migraineurs showed 
significant reduction in grey matter, in areas involved 
in processing of pain, cognition and multisensory 

Fig. 6  Morpho-volumetric analysis through Free-surfer software 
showing abnormalities of left cortical thickness in a patient with 
migraine
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integration versus patients with episodic migraine, which 
adds insight into the pathophysiology of migraine as a 
progressive disorder that may have long-term impacts on 
the brain as regards structure and function.
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