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Abstract

MicroRNAs (miRNAs) are a class of short, non-coding, regulatory RNA molecules that function as post transcriptional
regulators of gene expression. Altered expression of multiple miRNAs was found to be extensively involved in the
pathogenesis of different neurological disorders including Alzheimer's disease, Parkinson’s disease, stroke, epilepsy,
multiple sclerosis, amyotrophic lateral sclerosis, and Huntington'’s disease. miRNAs are implicated in the
pathogenesis of excitotoxicity, apoptosis, oxidative stress, inflammation, neurogenesis, angiogenesis, and blood-
brain barrier protection. Consequently, miRNAs can serve as biomarkers for different neurological disorders. In
recent years, advances in the miRNA field led to identification of potentially novel prospects in the development of
new therapies for incurable CNS disorders. MiRNA-based therapeutics include miRNA mimics and inhibitors that can
decrease or increase the expression of target genes. Better understanding of the mechanisms by which miRNAs are

therapeutic strategies.

Neuroprotection

implicated in the pathogenesis of neurological disorders may provide novel targets to researchers for innovative
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Introduction
MiRNAs are a class of short, non-coding RNA molecules
that contain 19-24 nucleotides. They usually regulate
gene expression at the messenger RNA (mRNA) level
[1]. There is strong evidence that miRNAs have a role in
different cellular processes including neural cells prolif-
eration and differentiation, cell specification, cellular me-
tabolism [1, 2].

miRNA are implicated in the pathogenesis of excitotoxi-
city, apoptosis, oxidative stress, inflammation, neurogenesis,
angiogenesis, and blood-brain barrier protection [3].
Therefore, it is not surprising that miRNAs have emerged
as key regulators of pathophysiology of different neuro-
logical disorders including Alzheimer’s disease, Parkinson’s
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disease, stroke, epilepsy, multiple sclerosis, amyotrophic lat-
eral sclerosis, and Huntington’s disease [4].

MiRNAs are released as circulating molecules into
body fluids such as CSF, blood, and urine and therefore,
they may be valuable biomarkers for detecting early on-
set neurodegenerative disorders. MiRNAs have the po-
tential to be therapeutic molecules, where miRNA
inhibitors and mimics can be used to target pathological
upregulated and down-regulated miRNAs [5].

The objective of this review is to provide a brief synopsis
about the role of miRNAs as key regulators and novel
therapeutic targets in different neurological disorders in-
cluding Alzheimer’s disease, Parkinson’s disease, stroke, epi-
lepsy, multiple sclerosis, Amyotrophic lateral sclerosis, and
Huntington’s disease.
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miRNA biogenesis

MiRNA genes are transcribed by RNA polymerase II
into primary miRNA (pri-miRNA) transcripts. The
Drosha (a class 2 ribonuclease III enzyme) and
DiGeorge syndrome critical region 8 (DGCR8, an
RNA-binding protein) cleave the pri-miRNA into pre-
cursor miRNA (pre-miRNA). Exportin-5 binds to the
pre-miRNA and helps their export into the cytoplasm.
Dicer, also known as endoribonuclease Dicer, is an
enzyme that cleaves the pre-miRNA into double
strand RNA. One of the two strands of the miRNA
duplex is incorporated into Argonaute (AGO) pro-
teins to form the miRNA inducing silencing complex
(miRISC) which leads to either translational repres-
sion or degradation of the target mRNA. The other
miRNA strand is degraded [6].

miRNA mimics and inhibitors

MiRNA mimics are synthetic short double-stranded
oligonucleotides imitating miRNA precursors. Once
they are introduced into cells, they are recognized
by miRNA biogenesis machinery and then processed
accordingly [7]. MiRNA inhibitors (antagomirs) in-
hibit the interaction between miRNA and the miR-
ISC or between the miRISC and its target mRNAs.
They block the translation of mRNA into protein or
induce its destruction. MiRNA-based therapeutics
include miRNA mimics and inhibitors that can de-
crease or increase the expression of target genes [8].

Mechanisms of miRNA-based therapeutics for
neurological disorders

Excitotoxicity

Several miRNAs were found to attenuate excitotoxicity
after ischemic stroke. Overexpression of miR-223 in hip-
pocampal neurons protected them from neuronal death
following transient global ischemia through decreasing
the levels of NMDAR subunit 2B and glutamate receptor
2 (GluR2) and halting NMDA-induced calcium influx
[9]. MiR-181a inhibitor attenuated astrocyte dysfunction
and hindered the decrease of glutamate transporter 1
resulting in enhancing the survival of hippocampal neu-
rons [10].

Apoptosis

Some miRNA-based therapeutics were found to de-
crease apoptosis either by increasing the levels of
anti-apoptotic proteins (Bcl-w, Bcl-2, Bcl-xl) or de-
creasing the levels of pro-apoptotic proteins (Puma,
Noxa, Bax) [11]. miR-24, MiR-497, miR-15a/16-1,
miR-181a, and miR-106b-5p antagomirs or miR-210
and miR-124 mimics were shown to attenuate the
size of infarction in ischemic brain through
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increasing the levels of anti-apoptotic proteins (Bcl-
w, Bcl-2, Bcl-xl) [12, 13]. A miR-124 inhibitor de-
creased infarction size in a mouse model through
inhibiting apoptosis-stimulating proteins of p53 fam-
ily [14]. MiR-23a, miR-21, miR-27a, and miR-23b de-
creased the levels of several pro-apoptotic proteins
(Puma, Bax, Noxa, cleaved-caspase-3) in traumatic
brain injury [15, 16]. Activating miR-21, miR-20a,
and miR-494 and inhibiting miR-29b attenuated
apoptosis in spinal cord injury by activating AKT/
mTOR signaling pathway and inhibiting phosphatase
and tensin homolog (PTEN) expression [17].

Oxidative stress

It has been demonstrated that downregulation of miR-
182 and miR-93, and upregulation of miR-424, miR-99a,
and miR-23a-3p attenuated oxidative stress in ischemic
brain [18-20]. miR-23a-3p mimic reduced oxidative
stress in a mouse middle cerebral artery occlusion
(MCAO) model through decreasing the production of 3-
nitrotyrosine (3-NT) and nitric oxide (NO) and increas-
ing the expression of Manganese super oxide dismutase
(SOD, a mitochondrial antioxidant enzyme that elimi-
nates excess ROS) [21]. MiR-93 antagomir reduced in-
farction size and improved function outcome after
ischemic stroke, via increasing the expression level of
erythroid 2-related factor (Nrf2) and its downstream
gene hemeoxygenase-1 (HO-1) [19]. In addition, miR-
486 inhibition ameliorated ROS in spinal cord injury
through increasing the expression of NeuroD6, upregu-
lation of glutathione peroxidase 3 and thioredoxin-like 1
[22].

Inflammation

Many miRNA-based therapeutics have anti-
inflammatory effect. Their anti-inflammatory actions
involve the suppression of cytokines secretion, astro-
cytes activation, and leukocyte extravasation. Inhib-
ition of miR-15a/16-1 or overexpression of miR-122
and miR-22 decreased the levels of the following in-
flammatory cytokines: TNF-a, IL-6, COX-2, VCAM-
1, and iNOS in ischemic brain [23, 24]. Exosome-
mediated delivery of miR-124-3p reduced tissue in-
flammation and induced M2 microglia polarization
after traumatic brain injury. The function of M2
microglia is to downregulate the inflammatory path-
way, thus promoting tissue repair [24].

MiR-27a, miR-124, miR-199b, miR-133b, and miR-
497 mimics attenuated inflammatory responses in
spinal cord injury through inhibition of NF-kB/IL-1b
pathway and reduction of astrocyte/macrophage acti-
vation [25, 26].
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Fig. 1 Micro RNAs dysregulation in Alzheimer disease. Multiple micro RNAs are involved in different pathogenic mechanisms of Alzheimer's
disease (modulating the activity of B-secretases, APP splicing, neurofibrillary tangles, neuroinflammation, or apoptosis). APP: amyloid precursor

Neurogenesis

miRNAs were found to modulate neurogenesis in cere-
bral cortex and spinal cord in stroke, spinal cord injury
and traumatic brain injury. Overexpression of the miR-
17-92 cluster in the subventricular zone (SVZ) signifi-
cantly enhanced neurogenesis and promoted the prolif-
eration of neural stem cells after acute ischemic stroke
[27]. miR-20a inhibitor increased neurogenesis and en-
hanced the survival of motor neurons in mice following
spinal cord injury through increasing expression of the
miR-20a target gene neurogenin 1 [28].

Angiogenesis
Several miRNAs were found to modulate angiogenesis in
stroke, spinal cord injury and traumatic brain injury.

MiR-107 mimic increased the number of capillaries in
penumbra and reduced infarction size in ischemic brain
through increasing the levels endothelial VEGF165/ 164
[29]. MiR-21 mimic improved functional outcome fol-
lowing traumatic brain injury via upregulation of
Angiopoietin-1 (Ang-1), Tie-2 (receptor of Ang-1), and
VEGF [30]. MiR-210 and mir-223 enhanced angiogen-
esis in spinal cord injury [31, 32].

Blood brain barrier/blood spinal cord barrier (BBB/BSCB)
protection

The inflammatory cascade following damage to the BBB
or the BSCB can be modulated by some miRNAs.
Downregulating miR-150 alleviated BBB disruption after
ischemic stroke through increasing claudin-5 and
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Fig. 2 Micro RNAs dysregulation in Parkinson disease. Multiple microRNAs were reported to control a-synuclein aggregation either by direct regulation or
by chaperon-mediated autophagy. Others control mitochondrial function or oxidative stress. LAMP2A: Lysosomal-associated membrane protein 2A, Hsp70:
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stabilization of T] protein ZO-1,191. Anti-mir-130 and
anti-miR-320 upregulated the expression of aquaporins
following ischemic stroke, which are implicated in the
clearance of cerebral edema [33, 34]. MiR-320a mimic
attenuated BBB disruption, ameliorated spinal cord re-
perfusion, and decreased water content in the spinal
cord through suppressing the expression of AQP1 [35].

MiRNAs dysregulation in neurological disorders

MiRNAs dysregulation in Alzheimer’s disease

Altered expression of some miRNA in patients suffering
from AD suggests that miRNA may have a crucial regu-
latory role on the mechanisms involved in the pathogen-
esis of AD, including beta-amyloid (Ap) metabolism by
modulating the activity of B-secretases such as BACE1

and tau aggregation leading to neurofibrillary tangle
(NTF) formation (Fig. 1) [36, 37].

MiRNA dysregulation in Parkinson’s disease

Multiple microRNAs were reported to control «o-
synuclein aggregation either by direct regulation, or by
chaperon-mediated autophagy and their downregulation
may contribute to a-synuclein-mediated neurotoxicity in
PD [38-40], (Fig. 2). In PD, there was upregulation of
some of these microRNAs [41]. Some microRNAs were
reported to be implicated in neuroinflammation, such as
miR-124 and miR-146a (anti-inflammatory) and miR-
155 (pro-inflammatory) [42]. MiR-124 enhanced the sur-
vival of dopaminergic neurons and attenuated microglial
activation in MPTP model of PD [43].
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Fig. 3 Micro RNAs dysregulation in ischemic stroke. Multiple microRNAs in pathogenic mechanisms (excitotoxicity, inflammation, and apoptosis),
risk factors, and stroke outcome. Some are promising therapeutic targets (neurogenesis and neuroprotection)

miRNAs dysregulation in ischemic stroke
Several reports demonstrated that miRNAs have distinct
expression patterns that modulate pathophysiological
process of stroke [44]. Tan and colleagues carried out
miRNA profiling from blood of young patients with
stroke and identified characteristic patterns in ischemic
stroke [45]. Moreover, anti-miR-320a led to a reduction
of infarct size in ischemic stroke with a concomitant in-
crease in aquaporins-1 and 4 mRNA [33]. After subject-
ing rat brains to MCAO then reperfusion for 24 or 48 h,
114 miRNAs were detected in ischemic brain samples.
Among them, 82 and 106 transcripts were detected in
the 24-h and 48-h reperfusion [46].

The pattern of miRNA profile in patients with small
artery stroke is distinctly different from that of large

artery stroke. Therefore, microRNA profiling can be
used to predict the stroke subtypes [47]. Some miRNAs
can be used as novel biomarkers for diagnosis and prog-
nosis in acute ischemic stroke, and some were investi-
gated as potential therapeutic targets [47, 48], (Fig. 3).

MiRNAs dysregulation in epilepsy

There is strong evidence that miRNAs dysregulation
were linked to the mechanisms of epileptogenesis
through regulating ion channels, inflammatory response,
synaptic plasticity, and neuronal apoptosis. Some miR-
NAs were reported to influences molecular and cellular
pathways implicated in epilepsy, including oxidative
stress, inflammation, immune responses, cell differenti-
ation, migration, and proliferation [49-51] (Fig. 4).
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Targeting these miRNAs is a challenge for future strat-
egies for anti-epileptogenesis therapy.

Yuan, Huang [52] found that silencing miR-132 had a
neuroprotective effect on epileptic mouse models
through regulating the morphology and electrophysi-
ology of dendritic spines. The expression of miR-22,
miR-34a, miR-21, and miR-125a in blood and the hippo-
campus were found to be changed 24 hours after the on-
set of status epilepticus [53].

MiRNA dysregulation multiple sclerosis

MiRNAs dysregulation display strong association with
multiple sclerosis (MS). Several MiRNAs were re-
ported to be consistently upregulated in MS patients
including miR-142-3p, miR-145, miR-146a/b, miR-22,

miR-155, miR223/-3p, miR-584, and miR-326. Overex-
pression of these miRNAs in MS patients suggests
their implication in the pathogenic inflammatory
process observed in MS. miR-155 was one of the
most consistently dysregulated miRNA in MS. It has
a role in disruption of the blood-brain barrier, im-
mune cell activation and neurodegeneration [54, 55].
Upregulation of miR-155 was significantly reduced by
immunomodulatory medications such as glatiramer
acetate (GA), supporting its potential role in the
pathogenic pro-inflammatory process [56, 57]. miR-
146 has also been reported to be upregulated in the
blood and CNS lesions of MS patients [57].

miR-17, miR-21, miR-320, and miR-150 exhibited dif-
ferent patterns across the compartments in MS patients
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Fig. 5 Micro RNAs dysregulation in immune compartment of multiple sclerosis. Dysregulation of different MiRNAs were reported to control the
inflammatory activity of various immune cells (Th1, Treg, Th17, macrophages, and B cells)

with predominant upregulation in the CNS lesions and
downregulation in the immune tissue [55, 58, 59]. Inter-
estingly, It has been reported that miR-21 exhibit both
pro- and anti-inflammatory functions. It is upregulated
in the active disease and downregulated in remission
state and in secondary progressive MS [60].

On the other hand, members of the miR-103, miR-548
miR-15, and let-7 families were consistently downregu-
lated in MS patients. Let-7 and miR-548 family members
were exclusively dysregulated in the immune compart-
ment while miR-103 family and miR-15a/b were down-
regulated in all cellular compartments apart from
regulatory T cells [55]. Dysregulation of different MiR-
NAs targeting the inflammatory activity of various im-
mune cells was shown in Fig. 5 [55, 58, 61, 62].

MiRNA dysregulation in Amyotrophic lateral sclerosis
Multiple differentially expressed miRNAs are implicated
in the pathophysiology of ALS. miR-27a, miR-34a, miR-
155, miR-142-5p, and miR-338-3p were indicated as
novel biomarkers and potential therapeutic targets in
ALS [63, 64].

MiR-155 is upregulated in both sporadic and famil-
ial ALS patients, and inhibiting it in the brains of
SOD1G93A mice model increases survival [63]. miR-
34a is dysregulated in ALS. It regulates X-linked in-
hibitor of apoptosis (XIAP) and Sirtuin 1 (SIRT1),
which is protective against oxidative stress-induced
apoptosis [65, 66]. ALS patients were also found to
have reduced expression of miR-34a, which is rescued
by treatment with enoxacin [65]. Thus, microRNA
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biogenesis stimulating drugs can be potentially used
in treatment of ALS [67].

MiRNAs dysregulation in Huntington’s disease (HD)

Several reports indicated as strong association between
miRNA and pathogenic mechanisms in HD. There is
strong evidence that both transcription and processing
of microRNAs appear to be dysregulated in HD [68].
Furthermore, microRNA sequencing and differential ex-
pression analysis demonstrated downregulation of miR-
29b, miR-124a, miR-9, and miR-9* The two later are
mature miRNAs that are produced by a single miR-9
precursor. Whereas miR-29a, miR-132, and miR-330 in
the brains of patients with HD were upregulated [69,
70]. Analysis of HD mouse models also identified

downregulation of miR-22, miR-128, miR-29¢, miR-138,
miR-132, miR-218; and miR-674, miR-344, and miR-222
[71].

MiRNA-based therapeutics

miRNA-based therapeutics include the pharmaco-
logical agents that exert neuroprotection through the
regulation of functional miRNAs. Hydrogen gas was
found to regulate oxidative stress via upregulating
miR-21 [72]. VELCADE or bortezomib, which is used
for treatment of multiple myelomas and mantle cell
lymphoma, exerts neuroprotective effect against cere-
bral ischemia through upregulation of miR-146a [73].
Ferulic acid improves functional recovery in spinal
cord injury by inhibiting miR-590 [74]. Additionally,
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there are other pharmacological agents including tri-
metazidine (TMZ) [75], acetylbritannilactone (ABL)
[76], hydrogen sulfide (H2S) [77], and nicorandil [78]
that depend on the modulation of specific miRNAs.
So, blocking the modulation of these miRNAs can
completely abolish the neuroprotective effects of these
agents against CNS injuries (Fig. 6).

Conclusion

There is strong evidence that clearly demonstrates the
association between miRNA dysregulation and neurode-
generative diseases. miRNA-based therapeutics have be-
come one of the most promising strategies in treatment
of incurable neurological disorders. Further researches
are needed to identify candidate miRNAs, clarify how
they exert their effects, design pharmacological formula-
tions and delivery methods that can cross the BBB to
target brain tissue, and develop methods to decrease off
target effects.
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