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Abstract 

Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating condition of peripheral nerve because of chem-
otherapeutic agent exposure among cancer patients. Despite its relatively high prevalence, to date, there has been 
no specific or standardized diagnostic criteria for CIPN and establishing diagnosis can be burdensome with significant 
time and efforts. Therefore, there is a need for an accurate biomarker to aid in early and objective diagnosis of CIPN. 
Based on the relevant pathogenesis of CIPN, herein we discussed several potential biomarker candidates to be incor-
porated in the diagnosis of CIPN, ranging from bodily fluid-based biomarker such as neurotrophic factors and neuro-
filaments, genetic biomarker such as microRNAs, electrophysiologic biomarker such as quantitative sensory testing, 
and imaging biomarkers such as high-resolution ultrasound and magnetic resonance neurography. We also discussed 
the strengths and weaknesses of each biomarker type, and future directions to accelerate its translation into routine 
use in clinical practice.
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Introduction
Chemotherapy-induced peripheral neuropathy (CIPN) 
is highly prevalent among cancer patients undergoing 
chemotherapy. In a meta-analysis, it has been reported 
to be as high as 68% during the first month of treatment 
[1]. CIPN can be physically disabling as it is marked by 
sensibility and motor function impairment, neuropathic 
pain, ataxia, and other disabilities of the affected indi-
viduals [2–4]. CIPN potentially reduce their quality of life 
and, possibly, their adherence to the subsequent chemo-
therapeutic regimens [5–8]. However, to date, there 

has been no specific or standardized diagnostic crite-
ria for CIPN. Establishing CIPN diagnosis varies widely 
between centers and the clinical evaluation often incor-
porates exhausting and time-consuming questionnaires 
[9]. Unfortunately, there has been no reliable and uni-
versally accepted quantitative biomarker to aid in early 
and objective diagnosis of CIPN, although there has been 
some progress in several areas. Herein we discuss the 
relevant and contemporary pathomechanisms of CIPN, 
along with several potential biomarker candidates for 
CIPN and its future directions to translate it into routine 
clinical practice.

Molecular mechanisms of chemotherapy‑induced 
peripheral neuropathy
CIPN occurs mainly via two major pathways, i.e., neuro-
inflammation and altered excitability of peripheral neu-
rons. Platinum-based chemotherapeutic medications 
such as oxaliplatin, cisplatin, and carboplatin exert its 
adverse effects toward peripheral nerves in the similar 
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way as it induces its main actions on tumor cells [10]. 
Chemotherapeutic agents primarily induce alterations of 
intracellular organelles, affect membrane receptors and 
ion channels, impairing intracellular homeostasis, signal-
ing, and neurotransmission, all of which resulting in neu-
roinflammation, DNA damage, and axonal degeneration 
[10].

Chemotherapeutic agents induce mitochondrial dam-
age, thus increasing the reactive oxygen species (ROS) 
production which leads to oxidative stress. Oxidative 
stress, in turn, induces cellular impairment and apoptosis 
by means of bioenergetic failure (via mitochondrial dam-
age), depletion of intracellular antioxidants, biomolecular 
damage, microtubular damage, activation of ion chan-
nels, demyelination, neuroinflammation, and impaired 
mitophagy [10–14]. Furthermore, it has been found that 
dorsal root ganglion (DRG) was vulnerable to damage 
caused by chemotherapeutic agents because it is less pro-
tected by blood–nerve barrier [11, 15]. DRG exposure to 
platinum-based, vinca alkaloids, taxanes, and thalido-
mide chemotherapeutic agents have been associated with 
its damage [16–19].

ROS directly damages mitochondria and its func-
tion. ROS may activate cellular apoptotic pathways and 
increase the synthesis and secretion of pro-inflammatory 
cytokines and mediators, by which it accelerates mito-
chondrial damage [20–23]. Oftentimes, the resulting 
mitochondrial damage was irreversible. For instance, 
oxaliplatin and cisplatin was able to bind to mitochon-
drial DNA (mDNA). The binding, in turn, impairs mito-
chondrial DNA replication and transcription, thereby 
disrupting protein synthesis essential for cellular respi-
ration and metabolism, thus causing mitochondrial and 
cellular dysfunction [10, 24]. This binding is irreparable 
since mitochondria does not possess DNA repair mecha-
nism. Another example was mitochondrial dysfunction 
after vincristine exposure by means of altering mitochon-
drial Ca 2+ signaling or vacuolization of mitochondria 
after exposure to paclitaxel [10, 24, 25]. In addition, pacli-
taxel also damages mitochondria via several mechanisms, 
including disruption of mitochondrial iron homeostasis 
via perturbation of ferroptosis pathway and downregula-
tion of FIS1, a gene responsible for mitochondrial fission 
to maintain cellular energy demands [26].

In addition, ROS was found to directly disrupt micro-
tubules. For instance, taxane-based chemotherapeutic 
agent was found to bind with β-tubulin of microtubules, 
inducing over polymerization and impairing normal 
microtubular function [11, 27–29]. Microtubules are 
critical to axonal transport and impaired microtubu-
lar function may lead to peripheral nerve demyelination 
and neuronal apoptosis. Other chemotherapeutic agents 
were also linked to microtubular impairment, including 

vinca alkaloid which binds to tubulin and interferes with 
mitotic spindle [27, 28, 30]. Similar mechanism was also 
found on bortezomib exposure which increases micro-
tubule-associated proteins, thus induces microtubular 
hyper-stabilization [11, 31] (Fig. 1).

Oxidative stress is also strongly associated with neuro-
inflammation. Many chemotherapeutic agents can cross 
the blood–brain or blood–nerve barrier and directly 
incite neuroinflammation through activation of a stream 
of pro-inflammatory cytokines and mediators. Chemo-
therapy-induced neuroinflammation affects central and 
peripheral nervous system and occurs through activation 
of both innate and adaptive immune system, including 
activation of satellite glial cells, Schwann cells, astrocytes, 
and microglia [32–36]. Exposure to chemotherapeutic 
agents were well-documented to cause increased levels 
of pro-inflammatory cytokines and mediators, includ-
ing IL-6, IL-8, IL-1β, and TNF-α [37–41]. Aberrant pro-
inflammatory state was also triggered by suppression 
of regulatory T (T-reg) cells, further exacerbating the 
inflammation [42, 43]. In addition, chemotherapeutic 
agents like vincristine were found to be able to activate 
CX3CR-macrophages, which leads to activate TRPA1, 
an ion channel responsible for pain sensation in humans. 
Vincristine and paclitaxel were also known to increased 
STAT3-CXCL12 gene promotor binding, inducing 
upregulation and binding of CXCL12 to CXCR4 which 
leads to increased chemotaxis and promoting inflamma-
tion [10].

The combination of oxidative stress and neuroinflam-
mation also lead to axonal degeneration in the peripheral 
nervous system. Long-term administration of chemo-
therapeutic agents was found to damage large myelinated, 
small unmyelinated nerve fibers, as well as intra-epider-
mal nerve fibers (IENF). IENF are unmyelinated or thinly 
myelinated nociceptors responsible for sensation of pain 
arising from periphery. Exposure to chemotherapeutic 
agents have been shown to reduce IENF [44]. Although 
IENF density does not always correlate with duration and 
dose of chemotherapy, as well as the associated CIPN 
symptoms [45]. The variable outcomes of chemothera-
peutic agents to IENF may be influenced by the methods 
of IENF quantification, demographics (including age and 
height of the corresponding innervated area), chemo-
therapy dose–response relationships, and the variable 
compensatory regenerative nerve response within the 
course of chemotherapy exposure [46], all of which had 
to be further delineated.

Nerve growth factor
Nerve growth factor (NGF) is a neurotrophic fac-
tor which promotes growth and survival of peripheral 
sensory nerve cells, sympathetic nerves, as well as the 
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functional integrity of the cholinergic neurons in the cen-
tral nervous system (CNS) [47, 48]. The seminal study by 
De Santis and colleagues [49]. had discovered lower cir-
culating NGF levels among subjects receiving platinum-
based and taxane-based chemotherapy, by which some 

patients had undetectable NGF levels after prolonged 
treatment. Furthermore, the study also found that NGF 
levels decrement correlated with the severity of chemo-
induced toxicity. Similarly, several studies also confirmed 
these findings. Subjects who received chemotherapy were 

Fig. 1  Relevant pathomechanism of CIPN with respect to the development of suitable biomarker candidates (adapted from Starobova and Vetter 
[10])
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generally found to have lower NGF levels when compared 
to control. This comprises those with hematological 
malignancies who had received bortezomib, thalidomide, 
and vincristine, or those with multiple myeloma who had 
received bortezomib [50, 51]. In a study involving women 
with cervical cancer receiving paclitaxel and cisplatin, 
with or without ifosfamide, NGF levels had a significant 
negative correlation with the severity of CIPN [52]. In 
addition, a clinical study involving 60 subjects with colo-
rectal, gastric, or lung cancer receiving taxane, platinum 
or bortezomib chemotherapy demonstrated increased 
NGF levels among those with painful CIPN [53]. More-
over, those subjects did not demonstrate significant loss 
of intra-epidermal nerve fiber density, suggesting a weak 
correlation between structural nerve fiber changes and 
NGF levels. However, the study did show a different NGF 
trajectory level (high vs. low in the previously mentioned 
studies), partly of which could be explained by the inclu-
sion of mixed chemotherapeutic agents used (including 
oxaliplatin), different measurement time points (putting 
coasting phenomenon into consideration), and different 
criteria for establishing CIPN severity.

In addition to functioning as a screening or diagnostic 
tool for CIPN, NGF levels were also reported to be higher 
after vitamin B administration among subjects who suf-
fered from peripheral neuropathy after bortezomib ther-
apy when compared with control groups [51], suggesting 
its effectiveness as a biomarker for monitoring treatment 
success and perhaps, prognosis.

The possible mechanistic interaction of NGF and CIPN 
was perhaps due to its high affinity to NGF receptor, 
tropomyosin-related kinase receptor A (TrkA) which are 
richly expressed in the dorsal root ganglion (DRG) neu-
rons, which in turn able to regulate the impact of chem-
otherapy-induced neuronal toxicity [9, 54]. Nevertheless, 
the pragmatic use of NGF as a blood-based biomarker 
for CIPN requires further studies, particularly those 
which attempt to delineate the mechanistic and tem-
poral relationships between the two, with a precise and 
standardized diagnostic criteria of CIPN, along with its 
progression.

Brain‑derived neurotrophic factor
Brain-derived neurotrophic factor (BDNF) is also 
an NGF that possesses a central role in the develop-
ment, maintenance, and repair of the CNS and the 
peripheral nervous system (PNS). BDNF is synthe-
sized exclusively in humans and specifically binds to 
tropomyosin-related kinase receptor B (TrkB) and non-
selective low-affinity TNF-α-related p75 (p75 NTR) 
neurotrophin receptor. There are few clinical studies 
evaluating the relationship of BDNF and CIPN. One 
study evaluated 91 multiple myeloma patients receiving 

bortezomib and/or thalidomide and found a signifi-
cant correlation between BDNF levels and the severity 
of polyneuropathy and BDNF levels also determined 
chemotherapeutic treatment responses. Interestingly, 
this study provided a diagnostic sensitivity and specific-
ity of BDNF levels for diagnosing CIPN (76 and 71%, 
respectively) [55]. Another study involved 45 multiple 
myeloma patients receiving vincristine or bortezomib 
and have their BDNF levels and single nucleotide poly-
morphism (SNP) for valine-to-methionine substitution 
at codon 66 (Val66Met) checked, along with an estab-
lished diagnosis of CIPN via Total Neuropathy Score 
(TNSr) and FACT-GOG-NTx [56]. The study found 
that low pre-treatment serum BDNF levels significantly 
correlated with CIPN development and vice versa, 
and that development of CIPN was associated with 
depression among subjects with Met/Met genotypes. 
Interestingly, authors believed that Val66Met did not 
affect BDNF signaling but impaired cellular distribu-
tion and dysregulation of BDNF [56, 57]. Furthermore, 
platelet’s BDNF secretion was thought to be impaired 
by chemotherapeutic agent such as bortezomib, thus 
reducing its capacity to repair the damaged peripheral 
nerves [58, 59]. In addition, the administration of pro-
neurotrophic agent such as 2-pentadecyl-2-oxazoline 
of palmitoylethanolamide (PEA-OXA) to rats with 
oxaliplatin-induced peripheral neuropathy was able to 
reduced hyperactivation of glial cells, increased pro-
duction of pro-inflammatory cytokines in the dorsal 
horn of spinal cord, and upregulation of neurotrophic 
factors (including BDNF) in the DRG [60]. The authors 
believed that increased BDNF levels was associated 
with structural as well as functional improvements in 
CIPN. Hence, BDNF levels can potentially be used as a 
screening tool, prognostication, and to monitor disease 
progression and therapeutic benefits.

However, again, the potential use of BDNF as a blood-
based biomarker for CIPN warrants further studies as 
there was a discrepant association between BDNF levels 
and the severity of CIPN symptoms between two study 
groups [55, 56]. One author explained several underlying 
reasons for this discrepancy, comprising different cancer-
dependent BDNF secretion levels (particularly those of 
hematologic vs. non-hematologic malignancies), different 
criteria used for the diagnosis of CIPN, and the absence 
of any objective measurements to address CIPN, such 
as quantitative sensory testing (QST) or alternatively, 
by using small-fiber testing using Q-sense device [61, 
62]. An obscure temporal and mechanistic relationships 
between BDNF levels and the natural history of CIPN 
itself may preclude its definitive and routine use in CIPN, 
be it as a screening tool, prognostication, or to monitor 
disease progression and therapeutic benefits.
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Neurofilament proteins
Neurofilaments (NF) are intermediate filaments pri-
marily expressed by large, myelinated axons and will 
be secreted into the CSF during neuron or synaptic 
degeneration. NF can be classified into three catego-
ries according to its molecular weight, i.e., light (NF-
L), medium, or heavy chain (NF-H). NF levels can be 
detected on ultra-low concentration in the blood or 
corresponding injured tissue, thus ensuring its sensi-
tivity [9]. NF-L has been studied in animal model, that 
is using rat model exposed to vincristine. NF-L levels 
of rats exposed to vincristine demonstrated a fourfold 
increase as opposed to controls, in parallel with signs of 
axonopathy and IENF loss [63]. Another study has also 
confirmed these findings, wherein exposure to cisplatin 
and paclitaxel increased NF-L levels and that its incre-
ment was associated with severity of morphological 
and functional alteration of axonal structure, suggest-
ing its reliability in detecting CIPN and linear associa-
tion between CIPN signs and symptoms as well as its 
morphological changes [64]. In addition, NF-L has also 

been studied among human patients receiving oxalipl-
atin and monitored for oxaliplatin-induced peripheral 
neuropathy (OAIPN). NF-L levels were significantly 
higher among those with more severe OAIPN and that 
its levels markedly decrease 6 months after cessation of 
chemotherapy [65]. Another study also observed NF-L 
levels to increase linearly with CIPN severity and that 
its levels are markedly lower among asymptomatic 
individuals as opposed to those with active symptoms, 
indicating the dynamic and linear association of NF-L 
levels with disease progression and severity, thus high-
lighting the usefulness of NF-L to detect early CIPN 
and monitor the ongoing neuroaxonal injury [66]. 
However, it was reported that NF-L had poor accu-
racy in defining CIPN according to one clinical study 
involving breast cancer patients treated with chemo-
therapy [67]. The authors suggested that CIPN involves 
a more distal portion of peripheral nerves rich in den-
drites as opposed to axons. Regardless, further stud-
ies are required to fully elucidate NF roles and natural 
responses in the event of CIPN (Fig. 2).

Fig. 2  Multiple candidate biomarkers potentially used to aid screening, diagnosis, to monitor disease progression, treatment response, 
and prognostication of CIPN [49, 55, 65, 68–70]
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MicroRNAs
MicroRNAs (miRNAs) are endogenous, single-stranded 
small RNA with length of approximately 22 nucleotides 
which function as antisense RNA to regulate target genes 
post-transcriptionally [71]. The association between 
miRNAs and genes are somewhat minute but significant 
as a single gene can be simultaneously targeted by sev-
eral miRNAs, whereas a single miRNA may target mul-
tiple genes [72]. MiRNAs consist of a highly complex 
network with their gene targets [71]. MiRNAs’ active role 
has been found in both physiological as well as pathologi-
cal processes, including cancer [73]. Many studies have 
confirmed the extent of miRNAs involvement in various 
aspects of cancer, including its proliferation, differentia-
tion, apoptosis, metabolism, invasiveness, metastatic pre-
ponderance, and resistance to chemotherapy [68].

The potential use of miRNAs for the diagnosis of CIPN 
was studied. An in  vivo animal model with paclitaxel-
induced CIPN demonstrated significantly increased 
levels of miR-124 (i.e., 5- and 10-fold on day 8 and 16, 
respectively) [74]. The increased miR-124 expression lev-
els were associated with cold allodynia and axonal degen-
eration of DRG and sciatic nerve, indicating its significant 
role in the pathogenesis of CIPN. Indeed, miR-124 is one 
of the many miRNAs associated with neuronal cell activ-
ity, wherein its plasma levels increment was reported in 
CNS injury, such as stroke [75]. In addition, miR-124 
was also shown to regulate microglial function and that 
miRNA-124-3p was able to attenuate allodynia and ther-
mal hyperalgesia by means of regulating Egr1 expression 
in the DRG and dorsal horn of spinal cord [76, 77].

There was one clinical study involving 84 patients 
with severe and mild CIPN after receiving paclitaxel for 
breast cancer [78]. There were 15 miRNAs with |fold 
change| > 0.5, of which miR-451a demonstrated the 
highest fold change, although statistically insignificant 
(P = 0.103). MiR-451a is associated with metabolism of 
paclitaxel, i.e., regulating the expression of drug trans-
porter protein (P-glycoprotein), thus plays a central role 
in resistance to chemotherapy. Furthermore, there were 
14 combinations of three miRNAs ranging in accuracy 
of 50 to 78.6%. However, the potential use of miRNAs 
as CIPN biomarker is rather a long shot due to multi-
ple reasons. Firstly, most of the identified miRNAs did 
not have high fold change, not to mention its statistical 
insignificance. This is reasonable since most of them do 
not possess direct mechanistic association with CIPN. 
For instance, among the 14 miRNAs, one of them was 
responsible for angiogenesis and another was useful in 
distinguishing early-stage pancreatic cancers, a some-
what typical loose association and rather generic role 
of many miRNAs. Secondly, validation of significant 
miRNAs requires a large pool of sample size and should 

have enough discriminatory powers with respect to 
demographics, health and disease status, and other con-
founding factors [71]. Thirdly, there should be a clear 
establishment of different types of miRNAs involved 
within the natural history continuum of CIPN. For 
instance, there were roughly 25 different miRNAs clus-
tering in early, progressing, and late non-small cell lung 
cancer at diagnosis, treatment selection, and its progno-
sis [71]. The last criterion is critically important to ensure 
the accurate and prudent use of miRNA as a screening 
tool, prognostication, or to monitor disease progression 
and therapeutic benefits.

Various attempts have been made to bolster the diag-
nostic power of miRNAs toward certain diseases. For 
instance, there is an ongoing trend to combine several 
miRNAs or incorporation with other classic biomark-
ers. Others utilized bioinformatics or computational 
approach to better sort and calculate the complex array 
of miRNAs and its associated target genes. In fact, bioin-
formatics approach was used to address significant genes 
involved in platinum-induced neuropathy and combined 
taxane–platinum-induced neuropathy according to its 
number of connections.

Quantitative sensory testing (QST)
QST is a standardized psychophysical test to meas-
ure multiple sensations, including vibration sensation, 
mechanical detection thresholds, and thermal (cold and 
heat) detection thresholds [79]. QST has the upper hand 
of being non-invasive, objective, and yields personalized 
results for each individual. QST is also able to detect 
subclinical pathological changes that might otherwise 
be regarded as normal when tested using a more con-
ventional electrodiagnostic approach, such as nerve con-
duction studies [80]. The latter is particularly relevant in 
the case of small-fiber neuropathy, including CIPN, pri-
marily in the early phase of the disorder [81, 82]. There 
were numerous studies employing QST for the purpose 
of CIPN detection. For instance, one study evaluated two 
clinical trials involving solid tumor survivors had found 
that those with moderate-to-severe CIPN had mark-
edly impaired tactile, vibratory, and thermal thresholds 
compared to patients without CIPN, and that patient-
reported outcome was correlated with QST results [69]. 
Another study evaluated the impact of oxaliplatin on 
peripheral neuropathy with QST and found prolonged 
pegboard test completion time, elevated bumps detec-
tion threshold, increased touch detection threshold, 
and increased warm detection threshold among those 
with increasing cumulative dose of oxaliplatin [83]. The 
diagnostic profiles of each QST component varies con-
siderably, depending on the type of chemotherapy used, 
measurement time point, and the methods employed 
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for QST. For instance, vibration detection threshold 
measured among subjects receiving oxaliplatin to detect 
clinically significant neuropathy 6  months after treat-
ment demonstrated sensitivity and specificity of 76% and 
53%, respectively [84]. Another study which evaluated 
the impact of oxaliplatin and cisplatin treatment among 
colorectal cancer patients using QST found that a change 
of −0.05  °C of cold detection threshold had a sensitiv-
ity and specificity of 92.3% and 64.9% in detecting CIPN 
after 6 months of chemotherapeutic treatment, whereas a 
change of −0.85 °C of heat detection threshold yielded a 
sensitivity and specificity of 64.3% and 70%, respectively 
[85].

In addition, QST can also be used to distinguish dif-
ferent types of CIPN, mainly neuropathic vs. non-neuro-
pathic pain. For instance, one study evaluated the sensory 
phenotypes of taxane-induced peripheral neuropathy 
(TIPN) among breast cancer patients [86]. Those with 
neuropathic pain symptoms had normalized heat pain 
thresholds when examined using QST, thus indicating 
retained C-fiber and TRPV1 function. Recently, one study 
successfully utilized diode laser fiber-type selective stim-
ulator (DLss) to selectively stimulate C and Aδ fibers, as 
determined by C/Aδ ratio, to detect painful CIPN on its 
earliest phase [87]. The resulting classification based on 
CIPN symptoms may potentially be used to monitor dis-
ease progression, determining the temporal relationship 
between symptoms with pathological process of CIPN in 
various time points, and to monitor treatment response 
and prognosis. In fact, several studies had incorporated 
QST profiles with patients’ response to medications for 
various types of neuropathic pain [88, 89].

However, the use of QST may be used with caution 
due to the wide normal range (thus increasing the false-
negative rate), highly variable measurement methods, 
requires full patient cooperation and attention (inatten-
tive individuals may increase erroneous results), as well 
as inability to distinguish malingering cases [90, 91]. 
Considering CIPN, there should be a well-defined diag-
nostic criterion, both in terms of clinical symptoms and 
QST thresholds for each of its component.

Nerve conduction studies
The use of conventional nerve conduction studies (NCS) 
has generally been limited by low sensitivity in the case 
of small-fiber neuropathies such as CIPN. It is obviously 
due to the relative nature of the small nerve diameter, 
non-myelinated, with miniscule axonal dimension result-
ing in too low of conduction velocities and amplitudes to 
be able to be detected by the NCS device [92]. However, 
NCS when applied appropriately, may yield important 
cues to nerve damage associated with CIPN, albeit with 
varying degree of significance. Several studies had found 

early SNAP decrease preceded CIPN among asympto-
matic individuals with prior exposure to chemotherapy 
[93–95]. In fact, one observational study using NCS con-
firmed that a more severe damage was found among sen-
sory than motor nerves among CIPN patients at different 
stages of chemotherapy, although it had a low association 
with clinical symptoms [96]. Another study investigated 
the impact of platinum and taxane-based chemother-
apy toward CIPN using NCS and found markedly lower 
amplitude of SNAP and CMAP, with platinum-based 
chemotherapy caused a more profound CMAP decre-
ment of ulnar and tibial nerve [97]. However, when com-
bined with clinical symptoms (i.e., using total Neuropathy 
Score), the model did not show statistical significance. 
Moreover, one study from Japan took even further steps 
that it used point-of-care NCS, a relatively quick and 
easy-to-use device to do NCS which found significant 
decrease of SNAP and preservation of conduction veloci-
ties as CIPN progressed [98], further confirmed axonal 
degeneration resulting from chemotherapy exposure. The 
potential of NCS in detecting CIPN is thus worth revisit-
ing and might be combined with other related modalities 
such as QST to yield better diagnostic sensitivity.

Imaging biomarkers
Neuroimaging can potentially be used as a biomarker 
for CIPN. One can measure the cross-sectional area 
(CSA) of the affected nerve by using high-resolution 
ultrasound (HRUS) [99]. One study evaluated the effect 
of taxane chemotherapy against the CSA of tibial motor 
nerve, median motor nerve, and sural sensory nerve and 
compared the results with healthy controls. The study 
also examined the intra-epidermal nerve fiber density 
(IENFD) of the corresponding patients. It was found on 
HRUS that sural nerve of those who had received chemo-
therapy was 1.2 mm2 smaller than healthy controls, and 
that decreased nerve CSA was associated with decreased 
IENFD by a ratio of 1 mm2: 2.1 nerve/mm [70]. On the 
contrary, one study which evaluated the impact of oxali-
platin, irinotecan, and 5-fluorouracil (FOLFIRINOX) had 
found an increased CSA of tibial and fibular nerve using 
HRUS, and that there were no correlations between CSA 
size, electrophysiologic findings, or clinical severity [100]. 
The increased CSA at entrapment sites may indicate 
oxaliplatin-induced nerve susceptibility to mechanical 
damage, even when there was no neurophysiologic evi-
dence of entrapment [101].

Magnetic resonance neurography (MRN) had also 
been evaluated as a potential neuroimaging biomarker 
for CIPN. It has been previously used as a biomarker for 
other peripheral neuropathies, including diabetic neu-
ropathy and HIV-associated neuropathy [102]. There was 
a significant DRG hypertrophy in oxaliplatin-induced 
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peripheral neuropathy patients as measured using MRN 
and that it correlated with the sensory neuropathy [103]. 
Recently, diffusion tensor imaging (DTI) was employed 
for early diagnosis of CIPN, demonstrating correlation 
between fractional anisotropy (FA) and apparent diffu-
sion coefficient (ADC) at medial and left plantar nerve 
[104]. The evidence for MRN is robust on proof-of-con-
cept ground, although its integration into clinical prac-
tice requires further studies.

Artificial intelligence and machine learning
Artificial intelligence (AI) has been extensively incorpo-
rated and studied for the advancements of diagnosis and 
treatment of various disorders. In the field of cancer, AI 
has been proven useful to aide chemotherapeutic drug 
research and development (e.g., identifying new drug 
compounds or improving drug delivery effectiveness and 
its permeability), predicting treatment response, as well 
as assisting in clinical decision support system [105]. 
Recently, AI also has shown promise in the detection and 
prevention of CIPN prior to drug exposure. For example, 
one study used machine learning-based quantitative-
structure toxicity relationship models, i.e., computational 
models to detect chemotherapeutic drug toxicity (i.e., 
CIPN) among novel antineoplastic drug candidates with 
satisfactory results, and the system even able to stratify 
drugs’ risk (high, medium, low) in inducing CIPN [106]. 
Another study used machine learning using input from 
electronic health records data and compared three algo-
rithms to develop prediction models and found that 
logistic regression yielded the highest and sufficient AUC 
(0.62–0.83) compared to decision tree and artificial neu-
ral network [107].

Conclusions
Given the account of the relatively high prevalence of 
CIPN and absence of any predictive biomarker for the 
purpose of early diagnosis, prognostication, or to moni-
tor disease progression and therapeutic benefits, the 
existence of such biomarkers is regarded highly neces-
sary. There are several problems, at least in our sight, that 
needs to be addressed. Firstly, there should be a standard-
ized definition and diagnostic criteria for CIPN, whereby 
there are a plethora of discrepancies in defining CIPN, 
including the use of multiple patient- or examiner-based 
questionnaires, lack of nerve conduction study protocols 
for CIPN and the resulting underutilization of the exami-
nation thereof. Inability to define CIPN universally has 
been proven to be problematic as it encourages varying 
research methods and, thus varying outcomes, resulting 
in inconclusive findings.

Secondly, there should be a clear temporal and mecha-
nistic relationships between various chemotherapeutic 

agents in inducing CIPN, along with the candidate bio-
marker profiles during the natural course of CIPN. For 
instance, there has not been a clear pathomechanism 
regarding the coasting phenomenon induced by plat-
inum-based chemotherapy, or the contradictory rise 
and fall of nerve growth factors, including NGF and 
BNDF, along the course of CIPN and that by artificially 
replacing these growth factors (e.g., NGF) during the 
depletion phase was proven to be ineffective in amelio-
rating CIPN or worse, even exacerbated the pain sever-
ity, or the variable impacts of multiple chemotherapeutic 
agents with its corresponding dose–response relation-
ship toward IENFD, and that NGF levels do not correlate 
with IENFD in spite of both reflects nerve degeneration 
and regeneration phases. These first two factors needed 
to be addressed simultaneously by conducting longitu-
dinal clinical studies which attempt to incorporate and 
characterize potential biomarker candidates along with 
the natural history of CIPN which was preceded by a 
confirmed diagnosis using universally accepted diag-
nostic criteria. In fact, one longitudinal clinical multi-
center study called Genetics and Inflammatory Markers 
for CIPN (GENIE) is attempting to solve this issue by 
incorporating genomic, metabolites, DNA methylation, 
gene expression, cytokines, and chemokines before, dur-
ing, and 12  months after taxane treatment among 400 
patients with breast cancer. The combined biomarker 
monitoring results will be compared with multiple CIPN 
assessment tools, including CTCAE, EORTC CIP20, BPI-
SF, and PROMIS. Given the broad spectrum nature of the 
study, it hopefully may be able to capture the natural his-
tory of CIPN along with association to multiple biomark-
ers of each stage more robustly. Moreover, the authors 
employed machine learning to detect non-linear relation-
ships among variables, thus reinforcing the diagnostic 
and prognostic sensitivity of the study [108] (Fig. 3).

Diagnosing CIPN requires a multidimensional 
approach, by which it incorporates the subjective symp-
toms, clinical signs (e.g., reduced vibratory perception or 
the presence of motor weakness), supporting electrodiag-
nostic findings, and, potentially, quantitative biomarkers. 
CIPN diagnosis also requires a thorough understanding 
of its natural history and phases, thus encouraging one 
to put CIPN into a disease continuum. The diagnos-
tic approach, therefore, should follow the path of those 
neurodegenerative diseases, like Alzheimer’s disease 
(AD) for example, and less of toward disease with simple 
diagnostic cut-off using blood-based biomarker, such as 
diabetes mellitus, wherein diagnostic confirmation, mon-
itoring treatment response, as well as prognostication 
can be done using a clear cut-off point of plasma glucose 
levels. In AD, the currently accepted diagnostic criteria 
established by National Institute on Aging (NIA) and 
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the Alzheimer’s Association (AA) has already incorpo-
rated biomarkers including neuroimaging-based (MRI or 
PET scan [amyloid, Tau, or FDG]) and bodily fluid-based 
(CSF beta-amyloid levels), as well as the classification of 
AD diagnosis based on disease continuum, from pre-
clinical to dementia due to AD [109, 110]. Although the 
corresponding diagnostic criteria is reserved to facilitate 
research, there is an ongoing trend to incorporate it into 
routine clinical practice [111]. Such an approach has the 
upper hand to study the natural history of AD in a com-
plete picture, the temporal and mechanistic relationships 
of biomarker candidates along AD natural course, stand-
ardizing clinical study outcomes, from biomarkers to 
clinical trials, and potentially accelerating the findings of 
disease-modifying drugs with clinical significance. Given 
the dramatic progress in AD research in recent years, for 
instance, marked by the first ever approval of disease-
modifying monoclonal antibodies, aducanumab for the 

treatment of AD by FDA [109], regardless of its contro-
versy [112], it is prudent to assume that one of which may 
be contributed by the utilization of NIA-AA AD diag-
nostic criteria. In our opinion, the same approach should 
also be applied to CIPN.
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