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Abstract 

Background Alzheimer’s disease (AD) is a neurodegenerative disease characterized by the accumulation of amyloid 
beta (Aβ) and tau aggregates within the neuronal milieu. To prevent their neurotoxicity, these pathological aggre-
gates will be cleared from the neuronal environment by extracellular, intracellular, and excretory mechanisms. As 
these compensatory mechanisms become overwhelmed, these left-behind aggregates will instigate neuronal loss 
via varied downstream signaling events. As a result, neurons undergo cell death through apoptosis and necrosis 
leading to the accumulation of cellular debris. Timely clearance of this cellular debris is critical, otherwise it can further 
potentiate neuronal loss by perpetuating pro-inflammatory environment.

Results Microglial cells migrate and engulf these dead neurons by a process known as canonical efferocytosis. On 
the other hand, normal living neurons will be cleared by microglial cells through extracellular exposure of phosphati-
dyl serine (PS) under the pathological influence of Aβ and tau through non-canonical efferocytosis. Canonical effero-
cytosis should be predominant with the absence of the non-canonical efferocytosis during the physiological condi-
tions. Upregulation of cytokines, and chemokines in AD creates a fertile ground for the amplification of non-canonical 
efferocytosis in parallel to canonical efferocytosis. The preponderance of the non-canonical over canonical pathways 
leads to exuberant clearance of stressed and normal living neurons along with dead neurons, thereby leading to exac-
erbated neuronal loss, brain tissue thinning and severe cognitive disturbances in AD.

Conclusions Research efforts should be directed to understanding the factors that fine-tune the balance 
between these clearance processes. Novel therapeutic strategies that reinforce canonical efferocytosis will be benefi-
cial by improving tissue repair, healing, and regeneration in AD.
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Background
Microglial cells are the most important glial cells in the 
central nervous system. They are responsible for numer-
ous physiological functions including neurogenesis, 
preservation of neuronal homeostasis, rehabilitation fol-
lowing neuronal injury and scavenging unwanted mate-
rial accumulating in the brain tissues [1]. Microglial cells 
function as primary phagocytes during physiological and 
pathological conditions [2]. In this regard, they tend to 
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migrate to the site of injury and ingest dead microbes, 
dying neurons, degenerating synapses and unwanted pro-
tein aggregates [2]. This physiological function of ingest-
ing dead apoptotic and necrotic neuronal cells is officially 
defined as canonical efferocytosis [3]. Canonical effero-
cytosis occurs in a stepwise fashion through the involve-
ment of specific chemotactic signals, bridging molecules 
and receptors [4, 5]. A recent report revealed that, migra-
tion of centrosomes into microglial invagination is the 
preliminary step for microglial pseudopodia formation, 
phagosome maturation and polarized vesicular traffick-
ing necessary for engulfment of apoptotic cells [6].

Microglial TLR4 (Toll-Like Receptor-4) and Axl recep-
tor (TAM family tyrosine kinase receptor) upregulation 
and their contribution to the pathogenesis of AD has 
been well documented [7, 8]. As microglial receptors are 
involved in initiating the contact for engulfing the dead 
neurons, any presence of inflammatory mediators might 
upregulate or stimulate the expression of these receptors, 
thus accelerating the process of canonical efferocytosis. 
Lipopolysaccharide (LPS) from neuroinflammation, and 
high mobility group box protein 1 (HMGB-1) secreted 
from the necrotic dying neurons along with Aβ are 
known to activate microglial TLR4 receptors [9–11]. This 
leads to the activation of downstream P2Y2 [purinergic 
receptor 2Y2]-Axl pathway-mediated removal of dying 
neurons in AD [9]. It is important to understand that, the 
momentum of the microglial efferocytosis should match 
the pace at which the dead apoptotic neurons accumulate 
near the site of the active disease process. If not, there 
is the risk of accumulation of this toxic neuronal cellu-
lar debris resulting in deleterious consequences in AD. 
A recent study showed that, perivascular cells secreted 
phosphoprotein-1 (SPP-1) is essentially indispensable for 
overlooking the microglial engulfment of neuronal syn-
apses along with boosted the expression of phagocytic 
markers (C1q [complement 1q], Grn [progranulin] and 
Ctsb [cathepsin-b]) under the presence of amyloid beta 
(Aβ) oligomers[12]. In instances where microglial effero-
cytosis becomes subpar, then astrocytes step in and exe-
cute pathological elimination of excitatory and inhibitory 
synapses adjoining the pathological plaques in a C1q-
dependent manner [13]. That being the case, comple-
ment-1q (C1q) deletion afforded better clinical outcomes 
by attenuating the pathological synaptic elimination in 
the mouse AD disease models [13].

Along with AD, microglial efferocytosis also seems to 
play an important role in modulating the disease patho-
genesis for facilitating neuroprotection and recovering 
neurological function in the stroke models. STAT6 [sig-
nal transducer and activator of transcription 6]/Arg1 
[arginine-1] signaling was found to be critical in regu-
lating the microglial phenotype, removal of dead/dying 

neurons, neuroinflammation, infarct size and clinical 
outcomes in the mouse models of ischemic stroke as 
well as stroke patients [14]. Furthermore, in a study by 
“Zhang”, and colleagues sigma-1 receptor (Sig-1R) was 
demonstrated to be responsible for regulating dead cell 
removal, neuroinflammation, and neurological deficits 
via boosting RAC1 [Rho family GTPase protein] sign-
aling-dependent actin polymerization, a pivotal step for 
the engulfment of apoptotic neurons in the transient 
middle artery occlusion (tMCAO)-induced stroke animal 
models[15].

M2 macrophage phenotype is primarily implicated in 
the removal of dead and apoptotic cells following patho-
logical insults, a critical process also associated with the 
resolution of inflammation [16]. Pro-resolving mediators 
such as resolvin D1, resolvin E1, maresin1, protectin D1, 
lipoxin A4, Myc-Nick, and LTB4 (leukotrienes B4) are 
implicated in the transformation of M1 to M2 microglial 
phenotype and thereby facilitate the removal of apoptotic 
cellular debris during neuroinflammatory and neurode-
generative conditions [16–20]. Canonical efferocytosis 
(Fig. 1) is essential for maintaining homeostasis, normal 
brain functional connectivity and neurodevelopment by 
synaptic pruning [21, 22]. Taken together, this process 
is helpful in the efficient clearing of dead cells accumu-
lated during the disease process in the physiological and 
pathological conditions. Nevertheless, uncontrolled, and 
excessive occurrence of this phenomenon is detrimen-
tal as it can potentially hasten neuronal loss, particularly 
in AD. Accordingly, in a few studies arresting microglial 
efferocytosis has prevented neuronal death and yielded 
favorable outcomes in AD disease models [23, 24].

In contrast, the non-canonical efferocytosis (Fig.  1) 
involves the same mechanism but involves the removal of 
normal and healthy living neurons instead of dead cells. 
In AD-model of P301 tau mice, tau-exposed neurons 
were cleared by adjoining microglia due to PS exposure 
on their plasma membrane [23]. Elevation of tau, LPS 
and Aβ in AD resulted in the removal of normal living 
neurons because they instigated extracellular PS expo-
sure by various mechanisms including increase in oxida-
tive stress, nitric oxide synthase (NOS), nitric oxide (NO) 
nitrate a(NO3-), and Milk factor globulin-E8 (MFG-E8) 
[23–25].

In ideal conditions, canonical efferocytosis should be 
functional, whereas non-canonical efferocytosis should 
be switched off for healing and tissue regeneration to 
proceed following neuronal insults, injury, and infections. 
Any clinical scenario which alters this balance between 
canonical and non-canonical efferocytosis tends to have 
disastrous consequences by amplifying the removal of 
dead as well as normal/viable neuronal cells (Fig. 1). This 
will expedite neuronal loss and accelerate the course of 
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disease progression in neurological disorders such as AD, 
Parkinson’s disease and stroke. This will set the stage for 
the emergence of excessive and widespread brain tissue 
loss and atrophy, a factor that is directly correlated with 
the inception of severe cognitive disturbances in neuro-
degenerative diseases like AD [26, 27].

Therefore, comprehension, of these two vital processes 
is necessary to understand their influence upon the 
pathogenesis of neurodegeneration in AD. In this review, 
we discussed the following sections including neurotoxic 
effects of amyloid and tau, microglial mediated, innate 
immune responses, heaping of dead cellular debris, types 
of the microglial efferocytosis, evidence of their simul-
taneous occurrences in AD, conclusion, limitations, and 
future research warranted. We particularly enumerated 
the processes of canonical and non-canonical efferocyto-
sis in a great detail with a thorough discussion of their 
pathways involved, study models enumerated, media-
tors—and receptors involved, and the consequence of 
their derailment on the pathological process of AD. This 
review is an effort to highlight the omnipresence of these 
two clearance pathways and underscore their impor-
tance on the neurodegeneration in AD. Kickstarting 
appropriate research studies to explore them will unveil 
new molecular targets that might be useful in tweaking 
these processes so that the efficient purging of accumu-
lated dead neuronal cells ensues without unconditioned 

removal of normal/living neurons. This will ultimately 
pave the way for better tissue healing, regeneration, lesser 
cognitive decline as well as optimal clinical outcomes in 
AD.

Methods
We performed a PubMed search of relevant articles 
that describe microglial innate responses in response 
to the active pathological process of AD. Specifically, 
we focused on microglial efferocytosis (canonical and 
non-canonical), its mechanism, pathways involved, the 
models studied and its effect on the clearance of dead 
neurons that pile up during the disease process of AD. 
We explored the current literature that enumerated these 
two processes and underscored their relevance in the 
context of AD disease pathogenesis. We also highlighted 
the repercussions of the imperfect regulation of these 
two processes on the disease progression in AD.

Discussion
Amyloid plaques and neurofibrillary tangles are the 
hallmark pathological signatures that were originally 
revealed by Alos Alzheimer in 1907 [28, 29]. As Aβ and 
tau aggregates start accumulating within the brain tis-
sues in the preclinical stage of AD, both intracellular and 
extracellular mechanisms are potentially required for 
clearing each of these pathological processes [30–32]. 

Fig. 1 Happening of canonical and non-canonical efferocytosis in the neuronal niche during AD pathogenesis: under the influence of Aβ, 
neurons undergo cell death by apoptosis leading to exposure of PS extracellularly thereby attracting microglia for clearance through canonical 
efferocytosis. Even normal living neurons which are stressed under the toxic clout of Aβ will expose PS thus becoming a meal for wandering hungry 
macrophages by non-canonical efferocytosis. If there are no surrounding macrophages near these stressed normal neurons, then can potentially 
revert into normal physiological state. Taken together, preponderance of non-canonical efferocytosis in AD can be a counterplot as it instigates 
riddance of normal stressed neurons over and above already dying neurons by just around the corner macrophages. This could potentially have 
clinical implications as it would scuttle the progression of neurodegeneration and onset of cognitive impairment in AD
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Intracellular mechanisms that tend to clear these aggre-
gates include the ubiquitin–proteosome pathway, 
autophagy–lysosome pathway, endosome–lysosome, 
endosome–lysosome pathway, and proteases [31]. Extra-
cellular mechanisms that were hypothesized for purg-
ing these pathological aggregates include proteases 
and microglial phagocytosis [30, 31]. Apart from these, 
excretory drainage pathways such as perivascular drain-
age, glymphatic clearance and CSF (cerebrospinal fluid) 
absorbance clearance were also implicated to purge these 
aggregates from the brain interstitial fluid into the sys-
temic circulation [30, 31, 33].

As these clearance mechanisms tend to be exhausted, 
these uncleared pathological aggregates are inclined 
to accumulate and exert their toxic influence on the 
neighboring neurons. Under the influence of Aβ, some 
of the mechanisms leading to the cell death include 
loss of mitochondrial membrane potential, increased 
mitophagy, JNK activation (C-jun terminal kinase), Bcl-w 
down-regulation (B-cell lymphoma-w), ER (endoplasmic 
reticulum) stress, lysosomal leakage, synaptic degrada-
tion, and oxidative stress [34–39].

Aβ oligomer accumulation is associated with micro-
tubule disassembly, inhibition of microtubule transport, 
impaired long-term potentiation and ectopic cell cycle re-
entry of neurons, all of which in combination can result 
in neuronal loss [40]. Anatomically, tau is principally 
expressed in the axons and very little can be traced to 
the dendrites or neuronal soma. Under the pathological 
influence of Aβ, tau is redistributed to the somatic den-
drites [41]. This anatomical redistribution of tau incites 
signaling events including enhanced NMDA [N-methyl-
D aspartate] receptor activity, calcium excitotoxicity, 
tau phosphorylation and microtubule destruction in the 
dendrites [42]. This tau-dependent microtubule disarray 
will impair the physiological delivery of presynaptic com-
ponents to the axon terminals and postsynaptic com-
ponents to the dendritic terminals [43]. Taken together, 
Aβ and tau work in tandem and instigate these changes 
which form the underlying pathological basis for synap-
tic dysfunction, neuronal death, brain tissue changes and 
cognitive abnormalities in AD [40].

Due to compensatory mechanisms launched by innate 
immune defenses, brain tissues can withstand these 
pathologies for some time as is evidenced by the pres-
ence of pathology many years ahead of symptom onset 
[44–47]. However, they are eventually exhausted and 
neuronal loss results in cholinergic dysfunction followed 
by emanation of the hippocampal atrophy and cognitive 
symptoms [48–51]. As neuronal cells undergo apopto-
sis, microglial cells come to the rescue and mount com-
pensatory defenses to arrest or reverse these processes. 
They accomplish this by various mechanisms including 

phagocytosis of Aβ aggregates, dysfunctional synapses, 
and dead/dying neurons, oxidative stress and pro-inflam-
matory cytokine secretion [52–54]. Furthermore, one 
of the important mechanisms acting to counteract the 
effects of Aβ and tau pathologies is microglial cell acti-
vation which occurs when these aggregates are ingested 
by phagocytosis via scavenger receptor (SR) which would 
elicit an inflammatory response (IL-1; interleukin-1) 
and could contribute to AD disease pathology [55, 56]. 
Microglial cells migrate, phagocytose, and degrade Aβ 
aggregates through fluid phase micropinocytosis, pro-
tease-mediated degradation, and SRs [57–59]. According 
to a recent study by Joshi, and colleagues, as the micro-
glial phagocytic function and micropinocytosis function 
of extracellular Aβ is overwhelmed, these Aβ oligomers 
will be transferred to the micro-vesicles (MVs) where 
they are anchored to the PrPc (cellular prion protein) or 
GM1 gangliosides on the external surface [60–63]. Sub-
sequently, these Aβ were solubilized by the lipid content 
of these MVs and thus become more neurotoxic [60]. It 
has been speculated that more toxic forms of Aβ resur-
face secondary to the uncanny and eccentric lipid com-
position of these micro-vesicles, a turning point that 
eventually instigates neuronal demise and progressive 
neurodegeneration in AD [60]. Some of the MVs plasma 
membrane lipids such as cholesterol, sphingomyelin, cer-
amide, and lipid rafts components are implicated in this 
transpiration [60, 64]. Microglial cells eventually release 
these MVs loaded with solubilized Aβ into the extracellu-
lar environment, which sooner or later reaches the neigh-
boring neurons to exert their neurotoxicity [60]

Future studies should be focused on understanding the 
lipid profile of these released microglial micro-vesicles so 
that the underlying basis for the generation of neurotoxic 
Aβ aggregates are clearly ascertained.

Coincidentally, after engulfing these extracellular Aβ 
aggregates, microglial cells are persistently activated via 
CD36 [receptor for thrombospondin; scavenger recep-
tor], Fc receptors [ITAM associated receptor family], 
TLRs and RAGE (receptors for advanced glycosyla-
tion end products) which has counterproductive effects 
by increasing the Aβ production and attenuating their 
removal from the neuronal tissues [58, 65–67]. Activated 
microglia in AD disease models are broadly classified 
into M1 (classically activated) and M2 (anti-inflamma-
tory phenotype) [58]. M1 phenotype is mainly respon-
sible for the secretion of pro-inflammatory cytokines 
(IL-1β [interleukin-1 beta], TNF-α [tumor necrosis factor 
alpha], STAT3 [signal transducer and activator of tran-
scription 3], IL-6 [interleukin-6], IL-12 [interleukin-12], 
IL-23 [interleukin-23] and ROS [reactive oxygen spe-
cies]) while the M2 phenotype is mainly incriminated 
with the release of anti-inflammatory cytokines (IL-10 
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[interleukin-10], IL-4 [interleukin-4], IL-13 [interleu-
kin-13], and TGF-β [transforming growth factor beta]) 
[58]. Unfortunately, M1 microglia secreted pro-inflam-
matory cytokines IL-1β, IL-6, IL-18 [interleukin-18], and 
TNF-α further exacerbate the ongoing disease pathogen-
esis by increasing the Aβ synthesis, decreasing the Aβ 
clearance and increasing the tau hyperphosphorylation 
[68–71]. However, M2 microglia secreted anti-inflamma-
tory cytokines such as TGF-β and IL-4 were deemed to 
be protective by facilitating the Aβ removal, reducing the 
brain parenchymal plaque burden and downgrading the 
amyloid-induced neuroinflammation [58, 72–74].

Furthermore, in AD disease models, there is concur-
rent activation of both M1 and M2 microglial pheno-
types in the early stages but as the disease progresses 
the microglial populations around parenchymal plaque 
accumulations tend to be predominantly M1 phenotype, 
which becomes a powerful drive for advancing the Aβ 
induced neuronal demise in AD [58]. Due to the lack of 
any checkpoint to reverse this microglial-induced toxic-
ity, neuroinflammation, and neurotoxicity, the disease 
process marches forward unabated. Ultimately this leads 
to excessive neuronal death, brain tissue thinning, pro-
gressive neurodegeneration and cognitive disturbances in 
AD.

Cytokines secreted by the microglia can have harmful 
effects on the neurons and associated synapses [75–77]. 
Furthermore, Aβ-stimulated microglial cells can cause 
neuronal toxicity via stimulation of TNF-alpha receptors 
as well as NMDA receptors [78]. Upon microglial inges-
tion of these Aβ aggregates, acidification of lysosomes 
(PH < 5) will facilitate their degradation [79]. Moreover, 
as Aβ aggregates are engulfed by microglia, they can 
induce collateral damage via the upregulation of ROS, 
NOS, and peroxy-nitrate (HNO₄.) thereby resulting in 
oxidative stress [80]. This Aβ-induced microglial oxida-
tive stress can result in neuronal loss in addition to their 
direct neurotoxicity.

Aβ aggregates exert direct toxic effects on the micro-
glial cells and an indirect toxic effect on the neurons 
through microglia cells [81]. In a study by Lorenzi and 
colleagues, microglial cells treated with high molecular 
weight Aβ 42 oligomers for 24-48 h demonstrated a sig-
nificant decrease in the cell viability along with increased 
secretion of pro-inflammatory cytokines IL-1 β and 
TNF-alpha [81].

Eventually, microglial cells will be overwhelmed by 
excessive piling of Aβ aggregates and thus there is a pos-
sibility that their engulfing capacity is saturated. Alterna-
tively, it was shown that microglial phagocytic capacity 
for Aβ was impaired in the mice with AD disease pathol-
ogy as compared to age-matched controls which was par-
tially restored by decreasing the amyloid burden by Aβ 

vaccination [82]. These findings underscore the probabil-
ity that the presence of Aβ will cause impairment of the 
microglial phagocytic capacity and facilitate their aggre-
gation and subsequent neurotoxicity.

This scenario leads to the piling up of these toxic 
aggregates within the vicinity of neurons leading to the 
kick-starting of apoptotic or necrotic signaling path-
ways within them. Additionally, micro-vesicles secreted 
by microglial cells were shown to interact and convert 
insoluble extracellular Aβ aggregates into soluble neuro-
toxic forms due to lipid content in their membranes [60, 
83]. Moreover, micro-vesicles isolated from CSF of AD 
patients should be neurotoxic to cultured neuronal cell 
lines [60]

Neuronal death can occur through apoptosis or 
necroptosis contributing to the accumulation of extra-
cellular debris in the brain [84–87]. As time progresses, 
aggregation of cellular debris adds to the pathological 
effects of Aβ aggregates [87–89]. Necrotic dead and dying 
cells release toxic mediators that can augment the ongo-
ing neuroinflammation mediated by microglial cells [90]. 
In the knee osteoarthritis, defective efferocytosis leads to 
lysis of necrotic cells and release of danger signals includ-
ing DAMPs [damage associated molecular patterns] 
(DNA [deoxy ribonuclear acid], uric acid, Hsp-90 [heat 
shock protein-90]), HMGB-1, receptor for advanced 
glycation end products and alarmins (S100A8 and S100 
A9) within the synovial joint [91, 92]. This leads to the 
activation of innate immune system, overproduction of 
pro-inflammatory cytokines, enhanced cartilage destruc-
tion and inflammation in the joint [91, 92]. Moreover, 
danger signals such as HMGB-1 were recently shown to 
directly inhibit the microglial phagocytic capacity which 
might delay the clearance of these toxic Aβ aggregates 
resulting in excessive neuronal demise and rapid disease 
progression in AD [93]. In a similar manner, the defec-
tive removal of apoptotic and necrotic neurons can incur 
disastrous consequences due to the release of danger 
signals and activation of pro-inflammatory pathways in 
the neuronal milieu in AD. To prevent this from happen-
ing, these dead neurons should be cleared by microglial 
efferocytosis which facilitates repair, healing, and tissue 
regeneration in AD.

It is defined as the ingestion and digestion of dead 
accumulated cells by primary professional phagocytes. 
The pathway usually basically involves two primary 
phases namely the ingestion phase and digestion phase 
[94]. The ingestion phase is further subdivided into five 
sub-phases including recruitment, recognition, tethering, 
signaling, and engulfment [95]. The pathway of canoni-
cal efferocytosis can be briefly summarized in four steps 
beginning with dead apoptotic cells mounting flash-
ing signals (eat-me signals) as well as releasing chemical 
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messengers (find-me markers) to signal the neighboring 
microglial cells in step I (Fig. 2) [95]. In step II, microglial 
cells migrate and physically couple with these dead cells 
utilizing eat-me receptors [95]. Post interaction, there 
will be the engagement of CRKII [CT10 regulator of 
kinase]-DOCK180 [CED-5/180 kDa protein downstream 
of chicken tumor virus no. 10]-ELMO [CED-12/engulf-
ment and migration] complex followed by stimulation of 
RAC1-mediated signaling pathway leading to the reshuf-
fling of the actin cytoskeleton (Step III) (Fig. 2) [95]. This 
will result in the invagination of the microglial membrane 
and subsequent engulfment of dead apoptotic neurons. 
Following the successful ingestion, processing and degra-
dation of dead cells transpires in the phagolysosome (step 
IV) through a unique pathway known as light chain-3-as-
sociated phagocytosis (LAP) (Fig. 2) [95, 96]. In this step, 
maturing efferosome containing dead cells is sequentially 
fused with early endosome, late endosome, and lyso-
some for consequent processing [97]. Regular canonical 
autophagy is characterized by double-membrane struc-
tures and delayed formation of autophagosomes, whereas 
LAP encompasses single membrane structures and 
quicker assembly of autophagosomes as short as 10 min 
as compared to hours in the former [98, 99]. Translo-
cation of LC3 and beclin1 to phagosome was a nascent 
step that formed the infrastructural foundation for the 
ensuing phagolysosome formation, brisk acidification, 
and annihilation of ingested dead cell [98]. LAP is also 
functionally distinct from regular canonical autophagy 
as the former is primarily implicated in shrinking pro-
inflammatory signals, amplifying anti-inflammatory 
cytokines, and abolishment of auto-antigen presentation 
following successful digestion of dead cells [100, 101]. As 
long as LAP operates, canonical efferocytosis will accom-
plish immunologically silent depopulation of dead apop-
totic neuronal cells from the extracellular space, a factor 
critical in preventing future arousal of autoimmune pro-
cesses within the brain tissues [100]. Cholesterol, protein, 
DNA, proteins, and amino acid arginine released from 
dead apoptotic cells will be processed in an immaculate 
manner so that ensuing negative microglial metabolism, 
inflammation and death are averted. Specifically, the 
processing of arginine into putrescine and Dbl [GTP-
exchange factor] is of foremost significance as continuous 
activation of actin regulating RAC1 ensures that micro-
glial will be forearmed for subsequent rounds of efferocy-
tosis [102]. Lipid-derived metabolites are responsible for 
the activation of nuclear receptors (PPAR [peroxisome 
proliferator-activated receptors] and LXR [liver X recep-
tors]) which triggers the expression of cholesterol efflux 
transporters (ABCA1 [ATP binding cassette transporter 
subfamily A1] and ABCG1 [ATP binding cassette trans-
porter subfamily AG]) and downregulated inflammatory 

gene expression (iNOS [inducible nitric oxide synthase] 
and IL-6 [103]. Over and above that, this stimulation 
of nuclear receptors effectuates the heightened prolif-
eration of efferocytosis machinery including phagocytic 
receptors (MerTK [Mer tyrosine-protein kinase], CD36 
[scavenging receptor] and Axl and bridging molecules 
(Gas6 [growth arrest-specific 6], MFG-E8 andC1q, which 
ensures incessant and unhampered furtherance of effero-
cytosis will transpire for safe and immunologically silent 
elimination of the accumulated cellular debris from the 
neuronal niche with evolving active disease process [100].

On top of this, the successful purging of dead neuronal 
cells by efferocytosis paves the way for mounting an anti-
inflammatory response by diminution pro-inflamma-
tory cytokines (TNF-α, IL-1 and IL-12) as well as by an 
upsurge of anti-inflammatory cytokines IL-10 and TGFβ 
(Fig.  2) [103–105]. Microglial efferocytosis entails the 
participation of numerous mediators including cytokines, 
chemokines, find-me signals, eat-me signals, bridging 
molecules, and receptors [4, 106–111]. In canonical effe-
rocytosis microglial cells are capable of recognizing and 
ingesting dead neuronal and microglial debris [112–116]. 
Briefly, in canonical efferocytosis dying neuronal cells 
secrete find-me signals or chemotactic factors such as 
sphingosine-1-phosphate (SIP), chemokine-like frac-
talkine (CX3CL1), lyso-phosphatidylcholine (Lyso-PC), 
ATP [adenosine triphosphate] and UTP [uridine triphos-
phate] whose main function is to attract the neighbor-
ing microglial cells towards them. Microglial sense these 
signals and migrate towards these dying neurons. Upon 
reaching their neurons, they utilize microglial receptors 
and bridging molecules (protein-S [vitamin K-dependent 
plasma clotting factor] and Gas-6) to bind to the apop-
totic neurons with the help of eat-me signals such as 
PS expressed extracellularly [117, 118]. Engagement of 
dead/apoptotic neuronal cells lead to their engulfment 
via downstream activation of PI3K [phosphoinositide-3 
kinase]/RAC1-mediated signaling pathways and actin 
polymerization [119, 120]. Sustaining this process of 
canonical efferocytosis via continual non-inflammatory 
microglial (M2) proliferation is critical for the apoptotic 
cell clearance, disease regression, tissue healing as well as 
resolution of inflammation [114].

Microglial receptors that are implicated in this physi-
ological process include (P2Y6 [purinergic receptor 
P2Y6], S1PR [sphingosine1-phosphate receptor], G2A 
[G protein-coupled receptor 132], CX3CR1 [C-X3-C 
chemokine receptor] for the find-me phase as well as 
BAI-1 [brain angiogenesis inhibitor-1], integrin β1 [inte-
grin beta-1], CD300b [cluster of differentiation 300b], 
TIM1 and 4 [ T cell immunoglobulin mucin domain-1], 
stabilin 1and2, RAGE [receptor for advanced glycosyla-
tion end products] and MERTK in eat-me phase [90]. 
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Fig. 2 Microglial canonical efferocytosis during AD neurodegeneration. Alzheimer’s disease is characterized by accumulation of amyloid beta 
and tau aggregates in the neuronal vicinity. These toxic aggregates will provoke neuronal death by various cellular downstream signaling events 
including oxidative stress, ER stress, mitochondrial damage, microtubule dysfunction and synaptic degradation. Neuronal cells undergo apoptotic 
cell death as a result and these cellular debris accumulates in the neuronal milieu. This cellular debris need to be removed in a timely manner 
otherwise they progress to undergo necrotic type of cell death, a crucial turning point that leads to disastrous consequences including heightened 
neuroinflammation, pacing disease progression and autoimmunity. To avert this from happening, microglial cells perform an important 
physiological function namely efferocytosis, which literally means engulfing and processing the neuronal debris. Apoptotic neurons expose eat-me 
signals and release find-me signals that fulfill the function of attracting microglial cells towards them. As these microglial cells approach these dead 
neurons, they are recognized by eat-me signals and utilizing the recognition machinery (bridging molecules and receptors), they engulf, process 
and degrade them in an immunological silent manner (LC3 phagocytosis). This transpires through involvement of ELMO-DOCK-RAC1 induced actin 
polymerization for phagocytic cup formation. An important byproduct of this purging process is secretion of anti-inflammatory cytokines due 
to stimulation of nuclear receptors such as PPAR-gamma and LXR
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Excessive activation of these microglial receptors can 
have potential implications in the pathogenesis of vari-
ous neurological diseases including AD. For example, 
the activation of STAT1 [signal transducer and activa-
tor of transcription-1]/Arg1 in the brain resident micro-
glia resulted in modulation of the microglial phenotype, 
enhanced resolution of inflammation and better clinical 
outcomes in stroke model [14, 112]. In a similar man-
ner, the sigma-1 receptor (Sig-1 R) knock-out mice that 
exhibited disablement of the microglial phagocytic activ-
ity, excess brain damage and severe neurological deficits, 
thus emphasizing the involvement of this receptor in the 
efferocytosis signaling events [15]. Accordingly, adminis-
tration of Sig-1 R expressed bone marrow macrophages 
to these knock-out mice resulted in the restoration of 
the microglial engulfment of dead neurons, attenuated 
infarction, reduced neuroinflammation and enhanced 
clinical recovery following ischemic middle cerebral 
artery occlusion [15]. Likewise, the CX3CR1 receptor is 
a microglial receptor involved in a cortical III-layer neu-
ronal loss in AD [121]. By knocking out this CX3CR1 
receptor, Fuhrmann, and colleagues were able to show 
that neuronal loss is reduced, and microglial–neuronal 
communication is restored, a culmination that revived 
the neuronal homeostasis in AD disease models [121].

Demonstrating the signature of canonical efferocytosis 
might be helpful in comprehending the genes involved 
as well as gauging the extent of occurrence of this physi-
ological process in the neuronal tissues during various 
disease stages of AD.

In this regard, it was unearthed that there were approx-
imately 80 efferocytosis-specific genes which were sig-
nificantly upregulated in the hepatocellular carcinoma 
(HCC) cohorts as compared to controls [122, 123]. In 
atherosclerosis, some of the genes associated with phago-
cytic receptors MerTK [, Lrp1 [LDL receptor protein], 
Tim-1and4 [T cell immunoglobulin mucin domain-1 
and4], SRB-1 [scavenger receptor B-1] and G2A [G pro-
tein-coupled receptor 2A]); bridging molecules (Gas-6, 
Fas [type-II transmembrane protein], Fas ligand [type-II 
transmembrane protein ligand] and C1q); find-me signals 
(CX3CL1); eat-me signals (calreticulin [CRT]); and don’t 
eat-me signals (CD47) were studied to ascertain their role 
in revamping the pathogenesis of atherosclerosis[124]. 
In atherosclerosis, studies which employed knock-out 
mouse models of Mertk, Lrp1, Tim1and4, C1q, Fas 
ligand, and calreticulin displayed increased plaque size, 
elastic lamina disruption, aneurysm formation, TUNEL 
[terminal deoxynucleotidyl transferase dUTP nick-end 
labeling]-positive cells in the necrotic core and plaque 
vulnerability [106, 124–128]. In tandem with these find-
ings, few studies were performed which demonstrate that 
markers of the microglial efferocytosis were significant 

in influencing the pathogenesis of neurodegeneration in 
AD. Tyro3 (TAM receptor subfamily of tyrosine kinase 
receptor 3) is a receptor present on microglial membrane 
and moderates the interaction, ingestion, and destruc-
tion of apoptotic cells [129, 130]. According to Zheng, 
and Colleagues, Tyro3 overexpression in 293APPswe 
cells were instrumental in decreasing the Aβ production 
as well as curtailing the activity of BACE1 (β-site amy-
loid precursor protein cleaving enzyme) enzyme. Over 
and above that, incorporating Tyro3 knockdown into the 
AD transgenic mouse model instigated the tweaking of 
pathogenic mechanisms so that there was a heightened 
assembly of Aβ aggregates in the hippocampal tissues of 
the mice brain along with increased density of plaque-
associated astrocyte congregations [131]. TGF-β1 which 
was previously implicated in the microglial activation 
was shown to increase the expression of MFG-E8 in 
microglia [132, 133]. Apoptotic cells also release TGF-
β1 which subsequently facilitates their clearance through 
canonical microglial efferocytosis [133]. The critical 
interaction that is essential for the apoptotic cell clear-
ance involves interlinkage between MFG-E8 and oxidized 
PS-expressed apoptotic cells [134]. Decreased produc-
tion or the absence of MFG-E8 is detrimental as mouse 
knock-out models (MFG-E8−/− mice) developed clinical 
sequelae including splenomegaly and glomerulonephritis 
secondary to generation of autoantibodies [135].

Non-canonical efferocytosis is a pathological process 
while canonical efferocytosis is physiological process, 
with both processes set in motion in varying proportions 
during the onset and progression of various neurologi-
cal diseases. Fundamentally, the delicate balance and the 
preponderance of either of these processes is primarily 
contingent upon the presence or the absence of neuro-
toxins as well as cytokine and chemokine profiles of the 
neuronal milieu. The fundamental and main difference 
between these two processes is that the former removes 
normal viable neurons, whereas later encompasses the 
clearance of dead apoptotic cells that accumulate during 
the course of neurodegeneration in AD.

The process of the non-canonical efferocytosis begins 
with exposure to the most common find-me signal 
namely PS on the outer leaflet of the plasma membrane 
of viable neuronal cells, in contrast to the canonical effe-
rocytosis which starts with the demise of neurons under 
the toxic influence of LPS, Aβ and tau aggregates (Fig. 3) 
[25, 136, 137]. It has been speculated that, healthy neu-
ronal cells upregulate find-me signals (PS) and down-
grade don’t-eat-me signals particularly when exposed to 
these stressful and toxic signals [112]. The underlying 
mechanism for this occurrence is still obscure and is a 
matter of investigation, although few researchers specu-
lated a plausible hypothesis in this regard. LPS and Aβ 



Page 9 of 20Kanuri  Egypt J Neurol Psychiatry Neurosurg           (2024) 60:81  

accumulation during neuroinflammation will initiate the 
process by acting on the microglial cells and cause upreg-
ulation of peroxy-nitrite via stimulation of iNOS and 
PHOX (Phagocytic NADPH [nicotinamide adenine dinu-
cleotide phosphate] oxidase) enzymes (Fig. 3) [138–141]. 

This peroxy-nitrite will act on the neighboring viable neu-
rons thereby instigating the outside exposure of the PS, 
providing a glaring flashing signal for microglial identifi-
cation. This step is followed by the migration of neighbor-
ing macrophages towards the normal and viable neuronal 

Fig. 3 Microglial non-canonical efferocytosis during AD neurodegeneration. It is quite evident that, the presence of lethal concentrations 
of Amyloid beta and tau is potent to provoke neuronal cell death. However, some of the normal and viable neurons at the site of active disease will 
be laid bare to the sub-lethal concentrations of these neurotoxicants. Although sub-lethal exposure is not neurotoxic, it incites neuronal alterations 
that can indirectly enkindles their removal by wandering activated macrophages. These sub-therapeutic concentrations will foment the production 
of ROS, nitric oxide and peroxy-nitrate with the neurons. Building up of these reactive oxidative species within the neurons will stir up the exposure 
of eat-me signals PS and CRT on their plasma membrane through inactivation of flippase and activation of scramblase enzymes. These PS-exposed 
stressed but normal and viable neurons can be recognized, engulfed [ELMO-DOCK-RAC1 induced actin polymerization] and processed [LC3 
phagocytosis] by activated wandering microglial cells utilizing bridging molecules and recognition receptors
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cells expressing PS extracellularly [95, 142]. Microglial 
cells will in turn, secrete (MFG E8), a bridging molecule 
which interlinks PS-expressed neurons with microglial 
vitronectin (VR) or αvβ3/5 integrin receptor [95, 138]. 
This interaction becomes the springboard for the conse-
quent generation of ELMO–DOCK180 complex which 
causes ensuing RAC1-mediated actin cytoskeletal rear-
rangement and F-actin remodeling (Fig.  3) [95]. These 
steps become the underlying foundational basis for the 
invagination and formation of the phagocytic cup for 
successful engulfment of the PS-exposed viable neurons. 
After ingestion, they will be boarded in single mem-
brane vesicles, fused with phagolysosomes and degraded 
through a unique process called LC3-associated phago-
cytosis to ensure dead clearance proceeds in an immu-
nological silent manner [100]. That being said, it is quite 
obvious that the non-canonical efferocytosis follows the 
same steps as canonical efferocytosis apart from the ini-
tial step encompassing exteriorization of the find-me sig-
nal for sparking the transmigration of the microglial cells 
towards stressed but viable neurons[112]. Interestingly, 
using blocking agents to either MFG-E8 or PS or phago-
cytic receptor might be beneficial as these stressed might 
revert back to their normal state by internalization of 
the PS and thus evading their ability to be recognized by 
hungry macrophages [138]. Over and above that, stressed 
but viable neurons will unsheathe their expressed PS 
from their plasma membrane whenever they escape 
from the influence of these toxic stimulants (Aβ and tau), 
which might come into existence as their concentra-
tion scales down secondary to their degradation by cel-
lular proteases or microglial ingestion. That being said, 
this unconventional phenomenon is a reversible process 
as compared to canonical efferocytosis which is a physi-
ological protective endeavor.

Therefore, inhibition of this inadvertent pathway might 
be beneficial as it can potentially limit the advancement 
of inflammatory neurodegeneration, which is widely 
prevalent in AD disease models [24].

MFG-E8 present in the brain is responsible for link-
ing PS-exposed apoptotic neuronal cells with the 
neighboring microglia and thus is primarily involved 
in instigating the signaling pathways necessary for the 
enforcement of efferocytosis [143]. Studies indicate that 
levels of MFG-E8 are significantly altered in AD, thus 
increasing the chances of hampered clearance of dead 
apoptotic cells from the neuronal extracellular space 
[143]. In the LPS-induced neuroinflammatory mod-
els, MFG-8 was shown to facilitate microglial phago-
cytosis of viable neurons [136]. These findings thus 
underline the existence of non-apoptotic neuronal loss 
during neuroinflammation and this can be blocked by 
the administration of inhibitors of the PS/MFG E8/VR 

pathway of the non-canonical microglial efferocyto-
sis [136]. Along with that, MFG-E8 was implicated in 
modulating microglial M1 /M2 phenotype and astro-
cyte A1/A2 phenotype via NF-kB [nuclear factor kappa 
B] and P13k–Akt [phosphoinositide-3 kinase–pro-
tein kinase B] pathways in AD disease models [144, 
145]. Moreover, MFG-E8 was revealed to hamper the 
Aβ supervised microglial production of cathelicidin-
related antimicrobial peptide (CRAMP), a protein 
primarily incriminated in launching innate immune 
responses of chronic inflammation in AD [146]. As 
neuroinflammation favors the exteriorization of the 
PS on the viable neurons and potentiates the non-
canonical efferocytosis, any credible efforts to prevent 
this from happening will have better clinical outcomes 
in AD disease models. By transfiguring the cytotoxic 
glial phenotype as well as by encumbering the genera-
tion of pro-inflammatory factors, MFG-E8 might be a 
potential therapeutic strategy in AD as it has the poten-
tial to alleviate the neuroinflammation-mediated non-
canonical efferocytosis. Microglial inflammation and 
neuronal demise demonstrated in the LPS-treated mice 
was lessened by 50% when the non-canonical efferocy-
tosis pathway was blocked using PS-blocking antibod-
ies, Annexin V, mutant MFG-E8 unable to bind VR, or 
VR antagonist [136]. Likewise, even MFGE8 knock-out 
mice experienced less neuronal loss upon challenged 
with LPS, thus reinforcing this speculative hypothesis 
of its manifestation during neuroinflammation [136].

On the contrary, the disarray of cytokine/chemokines 
and their respective receptor signals can bring forth a 
situation where microglial cells seem to feed on normal 
living neurons and microglial cells by an uncommon 
pathway known as non-canonical efferocytosis (Fig.  1) 
or phagoptosis [24, 112]. Reports suggest that canonical 
efferocytosis is an essential phenomenon required for the 
physiological development of hippocampus in the new-
borns [112, 147–151]. Along these lines, microglia can 
regulate the number of neuro-progenitor cells for facili-
tating the development of the cortex and cerebellum via 
canonical efferocytosis during the early phases of brain 
maturation [152, 153]. During neuronal development, 
microglial clearance of neuro-progenitor cells from the 
cortex and cerebellum was known to be bolstered by the 
presence of LPS and reactive oxygen species. Plausibly, 
the presence of these toxic stimulants might exacerbate 
the PS exposure on these neuro-progenitor cells thus 
transfiguring them into a more palatable meal for micro-
glial engulfment and elimination [152, 154].

In the setting of neuroinflammation, stressful but liv-
ing neurons are inclined to upregulate PS extracellularly 
which makes them more susceptible to being ingested 
by neighboring inflamed microglia through MFG-E8 
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receptor [24, 155]. Accordingly, MFG-E8 knock-out 
mice demonstrated reduced neuronal loss via attenuated 
macrophage-mediated removal [136]. Previous stud-
ies revealed that microglial cells tend to be actively 
ingesting viable neurons under the virulent influence of 
LPS, tau and Aβ aggregates [23, 25, 136, 137]. Micro-
glial cells treated with neurotoxicants such as LPS, 
Aβ and tau respond by an increase in sialidase activ-
ity and desialylation of their surface plasma membrane 
[156]. Accordingly, induction of desialylation of neu-
ron–microglial cultures resulted in increased microglial 
phagocytic activity and ensured the removal of normal 
living neurons through activation of phagocytic recep-
tor CR3 (complement receptor 3) [156]. It is important 
to understand that, sialic acid present in the neuronal 
glycocalyx preserves neuronal integrity by inhibiting 
complement C1 binding and CR3-mediated microglial 
removal [157, 158]. Accordingly, loss of these protective 
glycans from the neuronal surface makes them liable to 
expedited microglial removal through CR3 receptor [157, 
158]. Likewise, analogous potential mechanisms specu-
lated through which desialylation activates microglial 
phagocytosis can range from the exacerbated binding of 
galactin-3, less trans-activation of Siglec-11 [sialic acid-
binding immunoglobulin-like lectins-11] and Siglec-E 
[sialic acid-binding immunoglobulin-like lectins-E] to 
declined cis-activation of Siglec-2 [sialic acid-binding 
immunoglobulin-like lectins-2] and Siglec-3 [sialic acid-
binding immunoglobulin-like lectins-3] [156].

In a study by Neher, and colleagues, primary rat 
neuronal and microglial cultures treated with LPS 
demonstrated increased neuronal loss secondary to 
phagocytosis of dead/dying neurons within 3  days [24]. 
LPS stimulation of microglia resulted in their prolif-
eration, enhanced phagocytic activity and increased 
secretion of peroxy-nitrate [24]. Microglial secreted 
peroxy-nitrate acted on the neighboring neurons and 
triggered the exposure of eat-me signal PS (Fig.  3) [24]. 
Mechanistically, nitric oxide interaction with normal 
living neurons leads to extracellular PS exposure due to 
membrane lipid peroxidation and blockage of amino-
phospholipid translocase [159] (Fig. 3).

This exposure of the PS extracellularly on the neurons 
is the key step and a harbinger for their exacerbated 
elimination by microglial engulfment secondary to loss 
of plasma membrane phospholipid symmetry (Fig.  3) 
[24, 160, 161]. Necessary measures are taken to decrease 
this PS exposure might be beneficial in reducing their 
removal by macrophages [24]. This study provides an 
underlying basis for the presumption that inflammatory 
mediators such as LPS can trigger microglial-mediated 
removal of otherwise normal neurons by exposing PS 
extracellularly on their outer membranes. In addition to 

PS exposure, alternative mechanisms were also impli-
cated in the removal of living neurons with the presence 
of LPS. In a recent study by Hide, and colleagues LPS 
stimulation resulted in the upregulation of phagocytic 
receptor  P2Y2 as well as death cell sensing receptor Axl 
on microglial cells both are which might be responsible 
for the removal of the PS-exposed normal living neurons 
in AD [9].

Aβ activation of microglia will bring out stimulation of 
NADPH [] oxidase, NOS production and  [NO4

−] genera-
tion (Fig. 3) [162–166]. The buildup of this  NO4

−around 
the neurons will stimulate the exposure of the PS extra-
cellularly in neurons due to stimulation of scramblase 
and concomitant weakening of flippase or translocase 
[25, 166]. Aβ enhancing the phagocytic activity of sur-
rounding microglia in addition to precipitating the PS 
exposure on the neuronal cells [25]. In a study by Neni-
skyte, and colleagues, the administration of blocking 
agents to PS exposure (Annexin V or antibody to PS) 
and microglial phagocytosis (cytochalasin-D or cyclo 
RGDfV) was sufficient to attenuate neuronal loss sec-
ondary to Aβ toxicity [25]. Aβ induced loss of phospho-
lipid asymmetry along with extracellular PS exposure in 
the neuronal synapses due to lipid peroxidation-induced 
covalent modification of cysteine residues in the flip-
pase enzyme or amino-phospholipid translocase [167]. 
Accordingly, pretreatment of modulators of phospho-
lipid asymmetry [tricyclodecan-9-xanthogenate (D609) 
and ferulic acid ethyl ester (FAEE)] offered a protective 
effect against Aβ-induced neuronal loss in AD disease 
models [167]. Furthermore, pathological accumulation 
of tau causes PTEN (phosphatase and tensin homolog) 
activation, which underlies the extracellular exposure of 
the PS on the neurons and synapses for their subsequent 
microglial removal [137]. In P301S-tau mice, living neu-
rons with tau inclusions expose PS due to the production 
of ROS [23]. In a previous study, PS-exposed neurons 
induce microglial secretion of MFG-E8 and nitric oxide 
for potentiating their removal in P301S-tau mice [23]. In 
microglial–neuronal co-cultures, the addition of extracel-
lular tau was responsible for outside exposure of the PS 
on living neurons as well as stimulating the phagocytic 
activity of the microglial cells, both of which operate syn-
chronously to instigate successful removal of living neu-
rons without undergoing necrosis or apoptosis [168].

Taken together, all these studies support the hypoth-
esis that Aβ, tau and LPS-effect microglial engulfing 
capacity as well as reduce their ability to discern between 
normal neurons and dead or dying neurons [25, 169]. 
Desensitized microglia can become a liability in AD as 
they can actively ingest normal neurons in addition to 
dead or dying neurons. Presumably, aggregation of Aβ 
clusters in the brain tissues can potentially exacerbate 
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the microglial-induced neuronal shrinkage by shifting 
the balance towards the non-canonical efferocytosis. 
The preponderance of the non-canonical efferocytosis is 
deleterious as there are higher chances of elimination of 
normal living neurons as well as dead neurons. This will 
lead to disproportionate brain atrophy and increase the 
risk of developing severe cognitive abnormalities in AD 
[170, 171]. Taken together, we hypothesize that dysregu-
lation of efferocytosis is a primary pathology during all 
clinical stages of AD. This pathology can be exacerbated 
by factors beyond Aβ aggregates that contribute to the 
overactivation of efferocytosis and excessive clearance of 
normal neurons and microglial cells.

It is important to understand that the neurotoxic effect 
of Aβ is primarily dependent upon its concentration, 
with higher concentrations directly provoking neuronal 
death, whereas low concentrations might indirectly affect 
neuronal viability via stimulating microglial activity [34, 
138, 172]. Higher concentrations of Aβ were known to 
incite neuronal death by a multitude of mechanisms 
ranging from excitotoxicity, mitochondrial toxicity, syn-
aptic alteration, dysfunction of calcium homeostasis, ER 
stress, DNA damage, tau hyperphosphorylation to oxi-
dative stress [173, 174]. Apoptotic type of cell death has 
been reported as a primary mode of neuronal loss in AD 
[175]. As neurons undergo apoptotic cell death, there 
should be mechanisms set in motion for prompt clear-
ance of accumulated cellular debris from the extracellu-
lar space to prevent ensuing adverse consequences. So, 
apoptotic cells exteriorize PS and secrete find-me signals 
which serve as a forewarning as well as a glaring signal to 
the neighboring microglial cells in purging them immedi-
ately. This will commence the onset of necessary signal-
ing pathways for kick-starting canonical efferocytosis in 
the neuronal environment.

However, the scenario will be quite different if the con-
centration of Aβ aggregates is sub-therapeutic and thus 
does not have the full ability to exert a direct neurotoxic 
effect [138]. During these instances, Aβ will trigger the 
activation of alternative signaling pathways by acting 
on the neighboring microglial cells and neurons, which 
will eventually execute clearance of normal but stressed 
neurons via non-canonical efferocytosis. Recently it 
was proven that, low nanomolar concentrations of 
Aβ instigated microglial-mediated neuronal loss from 
the cultures and hippocampal slices by acting through 
calcium-activated potassium channel and nitric oxide 
upregulation [172]. At the same time, Aβ acting on the 
neurons might potentiate extracellular exposure of the 
PS due to inactivation of flippase enzyme on the plasma 
membrane (transmembrane enzyme amino-phospho-
lipid translocase) [176]. Therefore, due to a combina-
tion of effects of neurons and microglial cells, sub-toxic 

concentrations of Aβ might lay the foundation for the 
commencement of non-canonical efferocytosis in the 
neuronal milieu.

Regarding tau, its effects can be understood based on 
its location and concentration in the neuronal milieu. 
First, when intracellular tau concentration reaches 
super-threshold levels within the neurons, then neu-
ronal death and canonical efferocytosis will ensue [177]. 
In a second setting, if the neuronal concentration of tau 
is sub-threshold and neuronal death is not a possibil-
ity, then neuronal stress, exposure of the PS, and tag-
ging of stressed but viable neurons will ensue [23, 168]. 
In third scenario, excess intracellular tau might leak into 
the extracellular space and stimulate neighboring micro-
glial cells thus making them vigilant and sharp-eyed for 
watching out for depopulating PS tagged viable neurons 
by non-canonical efferocytosis [23, 168]. Lastly, excess 
extracellular tau might enter the neuronal cells, incite 
PS exposure, and ultimately facilitate their removal by 
already hungry stimulated macrophages in their vicinity 
[23, 168]. Taken together, these scenarios come into play 
in various permutations and combinations when there is 
an appearance of Aβ and tau accumulation in the neu-
ronal milieu.

A recent study reported that LPS-induced neu-
ronal death secondary to neuroinflammation as well as 
increased amassment of amyloid (Aβ1–42) in the cortex 
and hippocampus which directly translated to memory 
impairment and cognitive disturbances in AD [140, 178, 
179]. Neuronal demise under the influence of LPS engen-
ders the release of find-me and exposure of eat-me sig-
nals, which precipitates the migration of the microglial 
cells for favoring their clearance through canonical effe-
rocytosis. However, when LPS concentrations are sub-
optimal, microglial stimulation and discharge of nitrite 
radicals will be immediate aftereffects thus kick-starting 
the process of non-canonical efferocytosis.

Taken together, the process of neurodegeneration in 
AD is a complex phenomenon and is particularly driven 
by the relative concentration of cytokines, chemokines, 
and other toxic mediators. In all probability, the concen-
tration of toxicants tends to fluctuate depending upon 
the stage of the disease process and the robustness of 
immune defenses to ward the toxic stimulus from the 
neuronal environment. Depending upon the sturdiness 
of the host defenses, the concentration of the toxic stimu-
lus might vary from sub-optimal to above-threshold lev-
els. Moreover, we can also speculate that there might be 
some vacillation in the concentration of different toxic 
mediators (LPS, Aβ and tau) at any stage of the disease 
process. Regardless, the immune defenses might not be 
completely efficacious in purging all the toxic stimu-
lants that accumulate at the same point, thus exposing 
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the neurons and microglia to different concentrations 
of toxic mediators. This sets the precedence for pushing 
forward the hypothesis that gives rise to a framework 
where the deployment of both canonical and canonical 
efferocytosis at the same point at any given stage of AD is 
a strong possibility. The ratio of canonical to non-canon-
ical efferocytosis is also of paramount significance and a 
crucial decisive factor that influences neuronal loss and 
brain tissue thinning in AD models. Considering these 
arguments, we propose necessary research investigations 
in this regard to shed light on these submerged patholog-
ical set of circumstances so that appropriate therapeutic 
strategies can be crafted for shrinking neuronal loss and 
brain tissue damage which forms the underlying basis for 
cognitive disturbances in AD.

Conclusions
The main purpose of this review is to underscore the 
importance of this physiological pathway (microglial effe-
rocytosis) that plays a key role in tweaking the disease 
pathogenesis of AD. There are two forms of the micro-
glial efferocytosis, a canonical pathway which is involved 
in the removal of dead neurons accumulating in the neu-
ronal niche and the non-canonical pathway implicated in 
the removal of stressed but viable neurons displaying PS 
extracellularly on their plasma membrane.

M2 microglial cells are the primary phagocytes that 
tend to migrate, make initial contact, engulf dead, dying, 
and necrotic neurons during the physiological condi-
tions as well as pathological scenarios like AD through 
canonical efferocytosis, a process with the added benefits 
of suppressing the associated neuroinflammation and 
facilitating tissue healing endeavors in AD. This canoni-
cal process of the microglial efferocytosis entails the 
engagement of bridging molecules, receptors, and sign-
aling pathways, which act synchronously in effectuating 
actin polymerization-driven phagocytic cup formation 
for dead neuronal engulfment [94, 96, 180, 181]. As a part 
of an innate immune response, initiation, and full-fledged 
deployment of canonical efferocytosis will be beneficial 
not only in clearing the dead/dying cells accumulated 
during the course of the disease process, but also in the 
resolution of inflammation, tissue repair, regeneration, 
and homeostasis[96]. By RNA sequencing analysis of the 
human microglia, and neurons of the cerebral cortex, it 
was revealed that the microglial expression of phagocyto-
sis receptors (CX3CR1, P2Y6, P2Y12 [purinergic recep-
tor 2Y12], stabilin 1, SIRPα [signal regulatory protein 
α], TREM2 [triggering receptor expressed on myeloid 
cells 2] MerTK, and CD11b [integrin or adhesion recep-
tors]) is required for the microglial-mediated clearance 
of the PS-exposed neurons [112, 182, 183]. In physiologi-
cal conditions and during exposure to acute stressors 

(LPS), microglial cells will counterpoise to heighten 
their efferocytosis efficiency for having an equivalence 
between efferocytosis and neuronal apoptosis, mostly 
by incrementing their recognition receptor machinery 
and surveillance abilities [184]. However, during chronic 
pathological conditions like epilepsy, hyperactivity of the 
hippocampal network, altered ATP micro-gradients, pil-
ing of pro-inflammatory cytokines and attenuated recep-
tor machinery sparks off uncoupling between microglial 
efferocytosis and neuronal apoptosis, thereby engen-
dering the accumulation of dead apoptotic cells in the 
neuronal milieu[184]. The significance of the canonical 
pathway of the microglial efferocytosis in the pathogen-
esis of AD had recently gained significance and warrants 
further investigation [185, 186].

On the flip side, neurotoxicants such as LPS, tau and Aβ 
upregulated in AD can facilitate the removal of normal 
living neuronal cells by the non-canonical efferocytosis 
[23–25, 187]. As living neurons are exposed to sub-lethal 
concentrations of these above-mentioned toxicants, the 
release of nitric oxide with subsequent lipid peroxidation 
triggers the exteriorization of the PS due to incapacitated 
flippase as well as activation of plasma membrane scram-
blase enzyme [159, 162, 188]. These PS-exposed neurons 
are cleared by the neighboring wandering microglial cells 
through this idiosyncratic and unusual non-canonical 
pathway [23, 161]

Conceivably, it is plausible that both canonical, and 
non-canonical efferocytosis can be happening at the 
same time in varying proportions during the inception 
and progression of neurodegeneration in AD. It is plausi-
ble that, concurrent playing out of these two processes at 
the neuronal–synapse interface presents a predicament 
due to which aggravated neuronal loss can be a culminat-
ing effect in AD. As a matter of fact, the co-existence of 
both canonical and non-canonical efferocytosis is det-
rimental as it leads to the vigorous removal of dead as 
well as living neurons from the brain tissues. This will 
cause excessive brain tissue thinning and severe cognitive 
disturbances with an associated increase in morbidity 
and mortality in AD. Alternatively, overpowering non-
canonical efferocytosis is also deleterious as the removal 
of normal living neurons takes precedence over clearing 
dead and dying neurons. In this regard, identifying the 
relative proportion of these processes and their relative 
impact on the disease progression during the preclinical 
and clinical stages of AD would be worthwhile. It is also 
feasible to understand whether the effects of LPS, tau 
and Aβ are synergistic in inducing neurotoxicity as well 
as triggering stress-related PS exposure, thus opening the 
doors for the concurrent existence of these two divergent 
pathways [168].



Page 14 of 20Kanuri  Egypt J Neurol Psychiatry Neurosurg           (2024) 60:81 

Limitations
Microglial efferocytosis is a budding research topic 
with researchers still trying to ascertain its prominence 
in the CNS, particularly its enactment and precision in 
the physiological and pathological conditions still being 
nebulous. Currently, microglial efferocytosis is pre-
dominantly executed by microglial cells with secondary 
contribution from astrocytes and non-microglial mono-
nuclear cells [189]. A recent study by Konishi, and col-
leagues revealed that in the mice with microglial ablation, 
astrocytes expressing phagocytic machinery (Axl and 
MerTK) come to the rescue to scavenge the dead neu-
ronal debris [189]. Currently, it is not known whether the 
meticulousness of astrocyte efferocytosis matches that 
of the microglial purging process, thus knock-out mod-
els of the microglial efferocytosis should be interpreted 
with caution until we compute the soundness of the com-
pensatory mechanisms. That being said, to study the full 
effects of efferocytosis derailment on the neurodegenera-
tive process in AD, we should eliminate the all the cells 
contributing to this purging process including microglial 
cells, astrocytes and non-microglial mononuclear cells, 
which thus might be a challenging process [189].

Studies indicate that boosting canonical efferocytosis 
is beneficial by clearing the accumulated dead neurons 
in the neuronal niche during AD pathogenesis [190]. 
This requires dead neurons to proficiently display eat-me 
signals (PS) to facilitate their effortless clearance by the 
incoming microglial cells. With LPS or Aβ piling up dur-
ing the active disease stage, even neighboring viable neu-
rons displaying calreticulin can be engulfed and cleared 
by activated microglial cells through CRT–LRP pathway 
[191]. Moreover, as microglial cells ingest and clear the 
Aβ aggregates, they might inherently develop encum-
brances and weaknesses in their physiological functions 
including efferocytosis. Due to these transpirations, 
microglial will lose their decoding ability to pertinently 
distinguish between normal/viable and apoptotic under 
the toxic spell of LPS/ Aβ [190]. This collateral damage 
might magnify the neuronal loss and neuronal degenera-
tion in AD. Thus, interventions that heighten the micro-
glial efferocytosis in AD might not be alone sufficient to 
lessen neurodegenerative process in AD.

Downgrading the non-canonical pathway is essential 
for restraining unwanted removal of viable neurons from 
the neuronal niche and subsequent brain thinning in AD. 
ROS and nitric oxide generated by oxidative stress under 
the hegemony of LPS or Aβ are partially implicated 
for eat-me signal exposure in normal/viable cells, an 
unfolding that incites their impending removal through 
PS–MFG-E8–VR pathway [24, 191]. Neutralizing this 
unconventional neuronal removal process is indirectly 
dependent upon the near complete elimination of ROS 

and NO from the neuronal environment, an endeavor 
that is a little strenuous to accomplish.

Despite these transgressions, it would be worthwhile 
to delve into these processes and as a result we propose 
future research studies to get to the bottom of these 
clearance processes which might have a profound impact 
on the disease pathogenesis in AD. Therapeutic interven-
tions that promote efferocytosis in the neuronal niche 
can at least be applied as an adjunctive therapy to cur-
rently FDA-approved anti-amyloid medications to lessen 
the pile of neuronal cellular debris [192, 193]. This can 
become a turning point for setting in motion disease 
healing processes promptly as soon as neuronal damage 
materializes for furthering optimal disease outcomes and 
decreasing clinical symptom profile in AD.

Future research
Previous studies established that cytokines, chemokines, 
and other toxin factors spawned during AD pathogen-
esis disrupts the delicate balance between canonical and 
non-canonical efferocytosis. Under the influence of these 
toxic factors, the balance might be disproportionately 
swayed towards the non-canonical efferocytosis, a pro-
cess which should be relatively absent or minimal under 
physiological conditions. The preponderance of this 
process is counterproductive as it can foment hastened 
removal of stressed viable neurons along with bringing 
the tissue healing mechanisms to a standstill. As the con-
sequences of the preponderance of this non-canonical 
efferocytosis can be deleterious, further research is war-
ranted in delineating the protective strategies that might 
curb or lessen the activation of this pathological process 
so that neuronal loss and brain thinning can be scaled 
down. So, kick-starting research efforts to expose the 
necessary factors that govern the fine balance between 
canonical and non-canonical efferocytosis in AD is very 
much a future necessity.

It has been speculated that LPS-stimulated microglia 
overproduce peroxy-nitrate which acts on the neighbor-
ing stressed neurons to exteriorize PS, which becomes a 
first step before the dawning of non-canonical efferocy-
tosis [138]. With that being said, it would be worthwhile 
to explore the possible mechanisms by which peroxyni-
trate-induced wreckage of neuronal plasma membrane 
transpires, a vulnerability that sparks off exposure of the 
PS consequently for the materialization of non-canonical 
efferocytosis.

Furthermore, PS/MFG-E8/VR pathway has been pri-
marily implicated in the phagocytosis of stressed neu-
rons under the influence of LPS [25, 138]. Ramifications 
of blocking this phagocytosis pathway in the neurons 
stimulated with tau, and Aβ should be investigated in 
the future. Protein Annexin A1 (ANXA1) and MFG-E8 
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which are released from the microglial cells bound to 
play a crucial role in clearing the neurons during inflam-
matory and non-inflammatory conditions [136, 169]. 
Previous reports suggest their expression is increased in 
AD and they serve as an eat-me signal and bridging fac-
tor for clearing the PS-expressed apoptotic neurons [136, 
169]. Knockout models of these bridging molecules will 
need to be included in the research studies to assess their 
efficacy in attenuating the loss of normal and stressed 
neurons in AD [136, 169].

With regard to canonical efferocytosis, it is impera-
tive to delve into the influence of LPS, tau and Aβ on 
the efferocytosis machinery including microglial sur-
face receptors, bridging molecules and metabolism for 
comprehending the integrity of these processes during 
the dawning of neurodegeneration in AD. Furthermore, 
knock-out models of the microglial efferocytosis machin-
ery will succinctly identify the significance of these pro-
cesses in purging the accumulated dead neuronal cells 
and their lasting impact of untimely removal.

Given that the efficient removal of dead cells from 
the extracellular space requires efficient functioning of 
canonical pathways and switching of non-canonical path-
ways, research in this regard tends to highlight the key 
signaling factors involved in these concurrent processes 
operating during neurodegeneration inAD. This might 
serve as a framework for developing novel interventions 
for reducing the unnecessary neuronal loss and onset of 
cognitive disturbances in AD.

We anticipate that, full execution of above-mentioned 
research studies will become an initial-stepping stone 
by shedding light upon effect of toxic (LPS, Aβ & tau) 
aggrgates on microglial clearance processes in AD. This 
will yield valuable preliminary data that will help in com-
prehending the the status quo of microglial purging and 
subsequent heaping of neuronal debris during neurode-
generation in AD.
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