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Abstract 

Background:  Parkinson’s disease (PD) is a debilitating disease that alters an individual’s functionality. Parkinsonism 
is a complex symptom consisting of numerous motor and non-motor features, and although several disorders are 
responsible,  PD remains the most important. Several theories have been proposed for the characteristic pathological 
changes, the most important of which is the loss of dopaminergic neurons associated with a reduced ability to per-
form voluntary movements. Many drugs have been developed over the years to treat the condition and prevent its 
progression, but drug delivery is still a challenge due to the blood–brain barrier, which prevents the passage of drugs 
into the central nervous system. However, with the advances in nanotechnology in the medical field, there is growing 
hope of overcoming this challenge.

Summary:  Our review highlights the potential role of three commonly studied nanoparticles in laboratory-induced 
animal models of PD: chitosan, PLGA, and iron oxide nanoparticles as potential PD therapy in humans.
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Key messages
Although our review shows good potential for these nan-
oparticles in PD animal models, prospective and human 
patient studies are needed to further develop this tech-
nology for future widespread application.

Introduction
Parkinson’s disease (PD) was first described as a “shaking 
palsy” by Dr. James Parkinson. It affects 1–2 per 1000 of 
the population at any time, with its prevalence increas-
ing with age, and 1% of the population above the age of 
60 suffering from it [1]. The term Parkinsonism is a com-
plex symptom describing the typical motor features of 
PD attributed to the loss of striatal dopaminergic neu-
rons which include resting tremors, bradykinesia, and 

muscular rigidity [2]. Parkinsonism may also occur sec-
ondary to other causes such as medication side effects, 
normal pressure hydrocephalus, and vascular encepha-
lopathy, all of which can be identified and eliminated 
[3]. Additionally, there are many atypical parkinsonian 
syndromes resulting from neurodegenerative disorders 
with intracellular deposition of amyloidogenic proteins, 
such as multiple system atrophy (MSA), progressive 
supranuclear palsy (PSP), and corticobasal degeneration 
(CBD) [3]. These syndromes are characterized by promi-
nent non-motor features such as autonomic dysfunc-
tion, gastrointestinal symptoms, sleep dysfunction, and 
pain, resulting from neuronal loss in nondopaminergic 
areas [2, 4]. Evidence suggests that the pathophysiological 
changes associated with PD may start before the onset of 
motor features and include several non-motor presenta-
tions, such as sleep disorders, depression, and cognitive 
changes [2]. Although many effective drugs have been 
developed for treating PD, failure of their administration 
remains a significant challenge as they cannot cross the 
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blood–brain barrier [5]. Nanotechnology will play a key 
role in developing new diagnostic and therapeutic tools 
using engineered materials modified to the finest units 
on the nanometer scale [6]. At present, the formula-
tion of nanoparticles (NPs) as drug delivery systems has 
represented several advantages over conventional treat-
ments due to improved stability and solubility of the 
encapsulated drugs, enhanced transport across mem-
branes, and prolonged circulation time [7]. Furthermore, 
the NP formulation ferumoxytol has been approved for 
use as a contrast agent for MRI and several superpara-
magnetic iron oxide NPs are currently undergoing clini-
cal trials to pave a path for future diagnostic methods 
[8]. Our review aims to shed light on the potential role of 
three commonly studied NPs in laboratory models of PD: 
chitosan, poly(lactic-co-glycolic acid), and iron oxide NPs 
as potential PD therapy in human subjects.

Chitosan
Properties
Chitosan is a linear polysaccharide composed of 
N-acetyl-d-glucosamine and d-glucosamine linked by 
1-4-β-glycosidic bonds. It is a deacetylated derivative of 
the naturally occurring polysaccharide chitin found in 
the shells of Crustaceans [9].

Chitosan NPs can range in size between 30 and 
2500  nm [10, 11], and the deacetylated structure allows 
its interaction with the negative charge of cell mem-
branes, therefore it is classified as a mucoadhesive 
compound, allowing its passage through the otherwise 
impermeable blood–brain barrier [12].

It is water-insoluble under physiologic conditions, as a 
result, chitosan derivatives such as quaternized chitosan 
may be used to produce potential injectable formulas like 
hydrogels for localized drug delivery in PD [13].

Chitosan NPs are nontoxic, biocompatible, biodegrad-
able, and have antimicrobial activity with potential anti-
oxidant properties [12, 14]. Other important properties 
are high drug entrapment efficiency and sustained drug 
release [14, 15].

Uses and potential routes of administration in PD
Intranasal administration
In a rotenone-induced neurodegeneration model of PD 
with intranasal administration of pramipexole dihydro-
chloride-loaded chitosan NPs [16], and two other similar 
studies using the drug selegiline-loaded chitosan NPs [17, 
18], significantly increased dopamine and glutathione 
(GSH) levels, and catalase activity in the brain, and dem-
onstrated improved locomotor activity compared to the 
groups treated with the intranasal and oral non-NP for-
mulated counterpart solutions.

The use of N,N,N-trimethyl chitosan (TMC) for sur-
face modification of tristearin-based nanostructured-
lipid carriers (NLCs) increases the latter’s mucoadhesive 
potential by 13.3 times compared to non-surface-modi-
fied NPs. This bioadhesive strength at the nasal mucosa 
permits sustained release of the drug and transport 
to the brain via olfactory and/or trigeminal pathways, 
increasing target drug concentrations in the brain. This 
allows us to benefit from lower doses of drugs with 
high systemic adverse effects to achieve effective results 
[19]. In the same study, the NPs were also administered 
intravenously. While the brain–blood ratio of the chi-
tosan-modified drug ROPI-DS was higher than the non-
surface-modified NP, it did not surpass or equal the value 
in the intranasal route. Similarly, TMC-modified ROPI-
DS nanoplex-loaded flaxseed oil-based neuro-nano-
emulsions produced results that support the earlier study, 
the only difference being the mucoadhesive strength, 
which was increased by 6.6 times [20].

Another study using rotigotine-loaded chitosan NPs 
on Sprague–Dawley rats also supports the use of intra-
nasal route in comparison to intravenous [21], in addition 
to the superior anti-inflammatory, neuroprotective and 
antioxidant properties, indicated by the decrease in reac-
tive oxygen species (ROS) levels and neuronal changes in 
chitosan-loaded drug compared to the drug alone [14, 21, 
22].

Chitosan-coated-PLGA NP preparations loaded with 
the drug rasagiline have also been studied on Wistar rats 
in both intranasal and intravenous pathways in compari-
son to plain rasagiline solution. In the in  vitro release 
tests, the results showed that chitosan-coated NPs 
enhanced drug release by increasing the hydrophilicity 
of the PLGA NPs compared to their non-coated PLGA 
counterparts. This study also reports an increased bioa-
vailability and direct targeting to the brain through olfac-
tory neurons by various endocytic pathways of neuronal 
cells in the olfactory membrane. The study, however, still 
requires further pre-clinical and clinical studies to evalu-
ate its efficacy in humans based on risk/benefit ratio [23].

In another paper, the neuroprotective and neu-
rorestorative effect of intranasal administration of glial 
cell line-derived neurotrophic factor (GDNF)-loaded 
NLCs coated with chitosan was studied in a 6-hydroxy-
dopamine (6-OHDA) hemiparkinsonian rat model. The 
in vitro experiment took place on the PC-12 cell line of 
dopaminergic neurons, where the neuroprotective effect 
of the coated NPs was studied against the 6-OHDA 
neurotoxin. However, the results showed a very slight 
increase in the neuroprotective value of the encapsulated 
GDNF compared to the non-encapsulated GDNF based 
on behavioral tests performed on the Sprague–Dawley 
rats [24].
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Resveratrol-loaded chitosan glutamate NPs were also 
administered intranasally in MPTP-induced parkinson-
ism C57BL/6 mice. Results indicated significantly higher 
brain levels of resveratrol in the chitosan NP group than 
the plain resveratrol solution [25].

In a study, conductive hydrogels based on chitosan 
were evaluated as potential cell carriers for transplant-
ing human olfactory ecto-mesenchymal stem cells (OE-
MSCs) in future cell therapy for the treatment of PD via 
nasal injection. These hydrogels can potentially be used 
as a medium to differentiate OE-MSCs into dopaminer-
gic neuron-like cells and function as a substrate for func-
tional synapses between cultured cells [26].

Intravenous administration
If we flip the coin, chitosan NPs can also be surface-
coated by other compounds. An example of this includes 
using polysorbate 80-coated ropinirole hydrochloride 
(R-HCL)-loaded chitosan NPs for treating PD. In in vitro 
drug release tests, polysorbate 80-coated NPs showed 
sustained release of R-HCl compared to the non-coated 
preparations, besides prolonging the storage life of the 
NPs. Meanwhile, in in  vivo models, the concentration 
of R-HCl was measured in the highly perfused organs: 
brain, liver, spleen, and kidney of Wistar rats, 1  h after 
intravenously administering the drug. Concentration in 
the brain was higher with the polysorbate 80-coated NPs, 
followed by the uncoated chitosan NP, while minimum 
concentration was associated with the pure drug. This 
data suggests the ability of polysorbate coating to bypass 
the blood–brain barrier. Conversely, drug concentration 
in the other three organs showed the opposite pattern 
[27].

Potential oral route
Procedures performed on adult male Sprague–Daw-
ley rats with a unilateral 6-OHDA-lesion model of PD 
revealed a significant decrease in the scores of abnormal 
involuntary movements, FosB/ΔFosB, phospho-ERK1/2, 
and phospho-Thr34 DARPP-32 expression in the chi-
tosan-coated levodopa nanoliposome group, compared 
to the levodopa group by intragastric administration 
[28]. These results may suggest a potential oral route of 
administration in humans.

Potential pulmonary route
A study published in 2016 nods towards the possibility of 
developing L-Dopa-loaded chitosan-based dry powder 
NPs for inhalation, however, this alternative method is 
yet to be evaluated, and the success of brain delivery via 
this route is unknown [29].

Other uses
On the other hand, developing chitosan NPs as a gene 
delivery system for PD is still in progress. In one study, 
chitosan PEG-PLGA NPs conjugated with NGF, ACT, 
and pDNA (called APPDNs) demonstrated the ability 
to reverse dopaminergic (DA) neuron loss in the sub-
stantia nigra and striatum of sick mice [30]. In another 
study, chitosan-mangafodipir NPs carrying anti-eGFP 
siRNA or dsDNA were evaluated in cell cultures of 
an eGFP-expressing cell line of mouse fibroblasts 
(NIH3T3) [31].

A study evaluated the efficacy of chitosan and gold 
NPs as a sensing platform for the detecting and differ-
entiation of α-synuclein monomer and fibril, which is 
known to aggregate and is a critical component in the 
pathogenesis of PD. The developed assay is label-free, 
robust, requiring minimal sample pre-processing, and 
can be a promising alternative to dye-based techniques, 
with better sensitivity, fast response time without the 
need for bulky instruments [32].

Poly(lactic‑co‑glycolic acid) (PLGA)
Properties
Poly(lactic-co-glycolic acid) (PLGA) is a copolymer of 
lactide and glycolide whose ester chain spontaneously 
hydrolyzes, producing lactic acid and glycolic acid [33, 
34].

It inherits the intrinsic properties of poly(glycolic 
acid) which is a crystalline, hydrophilic polymer with 
a fast degradation rate under physiological conditions, 
and poly(lactic acid) which is a stiff, hydrophobic poly-
mer with low mechanical strength [35]. As a result, its 
degradation rate is affected by its lactic acid-to-glycolic 
acid ratio [34].

PLGA NPs size can range between 100 and 5000 nm 
[36]. However, the average for effective intracellular 
delivery varies between 107.7 nm and 245.7 nm [37].

Due to PLGA’s hydrophobic nature, surface modifica-
tion using polymers such as polyethylene glycol (PEG), 
polyvinyl alcohol (PVA), and d-α-tocopheryl PEG 1000 
succinate (TPGS) plays a crucial role in the targeting 
strategy, biocompatibility, and blood half-life [38].

Although PLGA NPs are nontoxic, biocompatible, 
biodegradable, and produce a minimal inflammatory 
response in the body [34, 35], some recent studies have 
demonstrated acute inflammatory responses due to 
intracellular rise in reactive oxygen species associated 
with the size, shape, surface charge, and concentration 
of the NPs exposed to the cells. However, most PLGA 
NPs formulated as drug delivery systems are on the 
safer side of the spectrum [39, 40].
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Uses and potential routes of administration in PD
Intranasal administration
PEG-PLGA-maleimide and methoxyPEG-PLGA were 
used in the preparation of rotigotine-loaded lactoferrin-
modified PEG-PLGA NPs. Following intranasal admin-
istration, the effects of lactoferrin modification were 
studied comparatively to its non-modified counterpart 
in 16HBE and SH-SY5Y cells in  vitro and male Kun-
ming mice in  vivo [41]. In an almost identical study, 
PEG-PLGA-maleimide and methoxyPEG-PLGA were 
also used in the preparation of dopamine-loaded borneol 
and lactoferrin co-modified NPs which were then intra-
nasally administered to 6-OHDA-treated Sprague–Daw-
ley rat parkinsonian model [42]. The drug release rates of 
dopamine from Lf-BNPs were comparatively lower than 
lactoferrin-modified NPs, which in turn were lower than 
the unmodified NPs, and there was relatively low toxicity 
when assessing all NP formulations with plain dopamine 
[41, 42]. Furthermore, lactoferrin modification promoted 
the uptake of dopamine-loaded NPs and rotigotine-
loaded NPs by both 16HBE and SH-SY5Y cells. However, 
borneol modification promoted the uptake of dopamine-
loaded NPs by 16HBE cells mainly [42]. Additionally, 
the contralateral rotation behavior test conducted on 
the rats revealed gradual improvement in all NP-treated 
rat groups, with the best results seen with the Lf-BNPs. 
These studies strongly suggested that the mentioned 
modification enables the targeted delivery of drugs for 
PD treatment.

Oral administration
Another new study synthesized a six-armed star-shaped 
PLGA (6-s-PLGA) polymer loaded with the neuropro-
tective drug Puerarin (PU). PU-loaded linear PLGA NPs 
were also formulated for the sake of comparison. PU-NPs 
incubated in simulated physiological conditions were 
found to be stable, suggesting their suitability for oral 
administration. In  vitro drug release tests showed that 
drug release of PU-loaded linear PLGA NPs was faster 
and more complete compared to the 6-s-PLGA polymer 
NP, a feature that would make PU release more dura-
ble. PU transport across cell monolayers was also better 
with the use of PU-NPs compared to the drug alone. In 
in  vivo studies on male Sprague–Dawley, improvement 
in oral drug bioavailability when using NPs supported 
the results obtained in  vitro for the gradual release of 
the drug, and there was also better drug distribution in 
the brain, thought to be due to higher amounts of drug 
absorption in the plasma, beside the small size of the NPs 
permitting them to cross the BBB. In addition, no associ-
ated toxicity was seen in vitro and in vivo. Instead, these 
NPs seem to be able to protect against MPP+-mediated 

cytotoxicity in vitro and MPTP-induced behavioral defi-
cits and neurotoxicity in vivo [43]. Another similar study 
using PU for oral administration supported the data [44].

Transdermal administration
Furthermore, upon a survey of the available literature 
that revealed the availability of selegiline transdermal 
patch for the treatment of major depressive disorder 
in the market, two studies tried to investigate the pos-
sibility of developing transdermal films with brain-tar-
geting properties for PD using nanotechnology. In the 
first study, selegiline-loaded PLGA NPs were embed-
ded in ethylene–vinyl acetate (EVA) transdermal film 
[45], while in the other one, PLGA-coated rasagiline 
mesylate NPs were embedded in a gellan gum transder-
mal film [46]. The transdermal route of administration 
of these two drugs was then compared to other modes 
of administration. Both studies concluded that transder-
mal administration of PLGA NPs helps in effective brain 
targeting and sustaining drug release for prolonged dura-
tions, opening the possibility of long-term, non-invasive, 
self-administration of drugs in patients with PD [45, 46].

Other uses
Several published studies investigate the in  vitro and 
in vivo effects of using PLGA NPs as drug delivery vehi-
cles for Parkinson’s disease, and the results compared 
to using the plain drugs favor the NPs formulations, be 
it the nasal [47–49], intraperitoneal [50], intravenous or 
intracranial route [51, 52].

Based on recent studies that demonstrate the role 
of the autophagy–lysosome pathway in the pathogen-
esis of PD, two studies employed the use of PLGA NPs 
to investigate their neuroprotectivity, the first one using 
MPP+ -treated PC-12 cells (MPP+ is a mitochondrial 
parkinsonian neurotoxin) [53], and the other study using 
cultured fibroblasts from a PD patient harboring the 
ATP13A2 mutation [54]. As discussed before, upon deg-
radation of PLGA, lactic and glycolic acids are released. 
This degradation inside the cells can lower the pH, restor-
ing lysosomal acidity and autophagic flux inhibition [53]. 
Overall, the results obtained from these studies revealed 
that PLGA NPs could protect PC-12 cells against MPP+-
induced mitochondrial dysfunction, as well as rescue lys-
osomal dysfunction related to ATP13A2 due to a loss of 
function [53, 54].

Furthermore, PLGA NPs may be used to encapsulate 
contrast agents and superparamagnetic NPs for enhanc-
ing their delivery into target areas in the body, and to be 
used in conjunction with available imaging modalities. 
As a result, they have become a new hotspot for cancer 
diagnosis and treatment and can potentially serve as a 
better diagnostic tool for PD [55].
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Iron oxide
Properties
Generally, there are three iron oxide NPs available: mag-
netite (Fe3O4), hematite (α-Fe2O3), and maghemite 
(γ-Fe2O3). However, due to their superparamagnetic 
property in which no magnetism remains after removing 
the magnetic field, Fe3O4 NPs are used in clinical appli-
cations [56].

IONPs can range in size between 5 and 300 nm, but to 
avoid prompt spleen and liver filtration and prolong the 
blood circulation time, the size of the NPs should not 
exceed 200 nm [56].

IONPs can lose their magnetism due to rapid aggrega-
tion and oxidation under physiologic conditions because 
of their large surface area, chemical reactivity, and high 
surface energy. Consequently, surface modifications 
(most commonly coating) using organic or inorganic 
materials (such as chitosan) are necessary to enable their 
use and functionalization in the human body [57]. In 
support of this theory, a published study revealed that 
the distribution and diffusion of the IONPs at the tissue 
and subcellular levels in the brain could be adjusted by 
different surface modifications. The SPIONs in this work 
were coated using maleic anhydride, maleic anhydride 
and Arg-Gly-Asp (Mal-RGD) and maleic anhydride and 
bovine serum albumin (Mal-BSA). Results demonstrated 
that RGD/Mal-SPION was the best candidate among 
the three treatments since they accumulated in and on 
the cell membranes, mitochondria, and myelin sheath of 
axons, dendrites, and axon terminals [58].

Uses and potential routes of administration in PD
Intravenous administration
In addition to therapeutic uses, IONPs can be used to 
implement new MRI-based diagnostic approaches for 
PD. A study investigated the use of amyloid oligomer-
specific scFv antibody (W20) conjugated with PEGylated 
SPIONs injected into the tail vein of A53T α-synuclein 
mice to identify amyloid oligomers in vivo by MRI. Pro-
nounced MRI signals were observed in the brainstem of 
the mice with conjugated-SPIONs, but no such signal 
was seen in mice injected with unconjugated-SPIONs. 
These findings indicated that W20-SPIONs specifically 
labeled the toxic amyloid oligomers to help identify the 
area damaged [59]. In another similar study, “cell-addic-
tive” NPs named B6ME-NPs were prepared by conjugat-
ing Mazindol (which has the same binding site as cocaine 
but 11-fold higher affinity than it) on the surface of the 
NPs which increased the affinity of the cells to them by 
dopamine transporter-induced internalization of NP, 
enabling easier uptake by cells. The accumulation of these 
NPs in the brain was made traceable via MRI following 

intravenous injection by incorporating superparamag-
netic iron oxide nanocubes and suggested potential 
application in PD treatment [60].

Intracerebral administration
To evaluate the therapeutic effects of human mesen-
chymal stem cells on PD using dextran-coated IONPs, 
6-OHDA was injected stereotactically into the left stria-
tum of male Balb-c nude mice to induce Parkinsonism. 
Three weeks later, the mice were divided into groups 
and either transplanted intracerebrally or intravenously 
with dextran-coated IONP-labeled hMSCs and another 
with unlabeled hMSCs. Rotational behavior testing using 
apomorphine revealed the rotation numbers of the mice 
transplanted intracerebrally with labeled-hMSCs to be 
significantly less than those with unlabeled-hMSCs. 
However, there was no significant difference between 
labeled and unlabeled groups transplanted intrave-
nously. Forelimb and hindlimb motor dysfunction were 
also measured using a rotarod test, and results obtained 
were like those of rotational behavior. Further investiga-
tions showed the enhanced migration of labeled-hMSCs 
toward damaged dopaminergic neurons, the ability to 
induce their transdifferentiation into DA-like neurons 
and promote their paracrine action to protect or regener-
ate compromised DA neurons in the PD recovery process 
[61].

In another bilateral 6-OHDA-induced PD rat model, 
the use of IONPs in conjunction with electromag-
netic field (MF) exposure was investigated. IONPs were 
implanted into the striatum. Results revealed that the 
group treated with IONPs and MF attained presurgical 
values of food and water intake, gait, and postural stabil-
ity compared to IONP or MF groups alone. Biochemical 
analysis for mitochondrial function and oxidative stress 
markers performed showed improvements. However, 
there was no significant difference between the IONP 
group and IONP + MF group [62].

Another study utilized electromagnetic fields to 
guide the migration of SPION-labeled adipose-derived 
stem cells transfected by GFP (ADSC/SPION) in male 
Sprague–Dawley rats. The lesion was produced by stere-
otactically injecting 6-HD solution into the right medial 
forebrain bundle, followed 2 weeks later by transplant-
ing the ADSCs. The animal groups then wore an exter-
nal magnet on their skull for 1 week. The comparison 
between experimental groups at week 6 for the rotational 
behavior test using apomorphine showed a significant 
decrease in rotations in the ADSC/SPION/EM group 
compared to the ADSC, ADSC/SPION, and PD groups. 
Two months post-transplantation, GFP-positive cells 
were counted, their highest numbers being in the sub-
stantia nigra and ventral tegmental area of the ADSC/
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SPION/EM group compared to other groups. H&E stain-
ing also revealed the highest counted number of neural 
cells to be in the ADSC/SPION/EM group. This data 
concludes that the use of external magnets for the deliv-
ery and homing of stem cells in the target tissue can be 
promising in PD treatment [63].

Other uses
To understand the neuroprotective mechanism of action 
of IONPs, Saccharomyces cerevisiae yeast cells were 
treated with both 6-OHDA and IONPs, digital micro-
graphs were taken and a gray level co-occurrence matrix 
(GLCM) algorithm was used to analyze the data. Results 
showed that IONPs antagonize the effects of 6-OHDA on 
some aspects of nuclear structure in Saccharomyces cer-
evisiae cells, and further research is necessary to under-
stand the interactions between IONPs, PD-associated 
dopamine derivatives, and the cell nucleus [64].

One study modified the surface of IONPs with the 
highly stable protein streptavidin. These newly formed 
SA/PEI-SPIONs were adsorbed on the cell membrane of 
dopamine synthesizing PC-12 cells derived from male rat 
adrenal pheochromocytoma, followed by using transmis-
sion electron microscopy (TEM) to explore the biodis-
tribution of SA/PEI-SPIONs on PC-12 cell membranes. 
Results revealed that the surface-modified SIONPs 
allowed more NPs to attach to the cell membranes, sug-
gesting the possibility of their application in targeting cell 
membranes for drug delivery [65].

Iron toxicity with prolonged use of SPIONs
SPIONs administered intravenously account for only 
1.25–5% of the total body iron content. However, for 
maximal benefit, SPIONs must be magnetically targeted 
to a particular organ, resulting in high concentrations in 
a localized area. The accumulation of SPION, and in par-
ticular, free Fe ions in the exposed tissue, can have toxic 
implications as they can alter the homeostasis of the cells 
and cause aberrant cellular responses that include cyto-
toxicity, oxidative stress, inflammation, epigenetic events, 
and even initiate carcinogenesis [66].

Conclusions
In conclusion, there is revolutionary potential for PD 
therapy. The significant challenge of drug administration 
is gradually fading away with nanotechnology utilization. 
Further studies need to take place on human subjects to 
show the efficacy of these NPs, including in terminal PD 
patients, who otherwise have minimal chance of recovery 
with conventional methods. We also recommend studies 
to be conducted to identify physician perception, biases, 
and fears in the future implementation of nanotechnol-
ogy in PD therapy.
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