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sleep–wake cycle and the physiopathology 
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Abstract 

The objectives of this review were to explain the neurologic processes that control the human sleep–wake cycle as 
well as the pathophysiology of the human circadian clock. Non-rapid eye movement and rapid eye movement sleep 
are the two main phases of sleep. When triggered by circadian input from the anterior hypothalamus and sleep–
wake homeostatic information from endogenous chemical signals (example, adenosine), the ventrolateral preoptic 
nucleus initiates the onset of sleep. Arousal in which there is a conscious monitoring of the surroundings and the 
ability to respond to external stimuli is known as wakefulness. It contrasts the state of sleep, in which receptivity to 
external stimuli is reduced. The higher the synchronous firing rates of cerebral cortex neurons, the longer the brain 
has been awake. Sleep–wake disturbances induced by endogenous circadian system disruptions or desynchroniza-
tion between internal and external sleep–wake cycles are known as circadian rhythm sleep–wake disorder (CRSWD). 
Patients with CRSWD usually report chronic daytime drowsiness and/or insomnia, which interferes with their activi-
ties. CRSWD is diagnosed based on the results of some functional evaluations, which include measuring the circadian 
phase using core body temperature, melatonin secretion timing, sleep diaries, actigraphy, and subjective experiences 
(example, using the Morningness–Eveningness Questionnaire). CRSWD is classified as a dyssomnia in the second 
edition of the International Classification of Sleep Disorders, with six subtypes: advanced sleep phase, delayed sleep 
phase, irregular sleep–wake, free running, jet lag, and shift work types. CRSWD can be temporary (due to jet lag, shift 
work, or illness) or chronic (due to delayed sleep–wake phase disorder, advanced sleep–wake phase disorder, non-
24-h sleep–wake disorder, or irregular sleep–wake rhythm disorder). The inability to fall asleep and wake up at the 
desired time is a common symptom of all CRSWDs.
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Background
The 24-h internal clock in our brain that regulates cycles 
of alertness and sleepiness by responding to light vari-
ations in our surroundings is known as the circadian 
rhythm [1]. Melatonin is a hormone produced mostly 
during the dark period in the pineal gland and inhibited 
by light exposure. It affects circadian rhythms and the 
sleep–wake cycle [2]. Aging is associated with circadian 

disruption, such as sleep disruption and inflammation, 
which leads to metabolic problems [3]. As a result, sleep 
cycle disruptions result in a lot of pathophysiological 
alterations that hasten the aging process [4–11]. In dif-
ferent organisms, the circadian clock developed to inte-
grate external environmental changes with physiological 
processes [12–15]. The clock gives the host chronologi-
cal accuracy and a remarkable capacity to adjust to its 
environment. Whenever circadian rhythms are dis-
rupted or distorted because of sleeplessness, rotating 
shifts, or other lifestyle variables, negative health reper-
cussions emerge, and the risk of diseases like cancer, 
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cardiovascular disease, and metabolic disorders rises 
[16–18]. Although the detrimental effects of circadian 
rhythm disruption are now commonly recognized, there 
is still a lack of substantial evidence on how to take full 
advantage of, or correct, biological timing for medical 
benefits. The objectives  of this narrative review were to 
explain the neurologic processes that control the human 
sleep–wake cycle as well as the pathophysiology of the 
human circadian clock.

Methods for literature search
Original studies, book chapters, and review articles that 
reported on the neurologic processes that control the 
human sleep–wake cycle as well as the pathophysiology 
of the human circadian clock were searched in the fol-
lowing electronic databases: PubMed, Scopus, and the 
Web of Science. The following Medical Subject Headings 
were used to search for articles in the above-mentioned 
databases: Sleeping Habits, Sleep Stage, Sleep Monitor-
ing, Circadian Rhythm Sleep Disorders. Full articles were 
assessed, and relevant information was extracted.

The neurophysiology of sleep
There are two major phases of sleep: non-rapid eye move-
ment (NREM) and rapid eye movement (REM) sleep 
[19]. The ventrolateral preoptic nucleus contains gamma-
aminobutyric acid (GABA) and galanin, and when trig-
gered, initiates the onset of sleep via circadian input from 
the anterior hypothalamus and sleep–wake homeostatic 
information from endogenous chemical signals (exam-
ple, adenosine), which accumulate in proportion to time 
spent awake [19]. As an individual falls asleep, the elec-
troencephalogram (EEG) primarily changes from a state 
of high frequency and low voltage waves in the wak-
ing state to higher voltage and slower waves signifying 
NREM sleep. Thereafter, another transition occurs from 
NREM into REM sleep, characterized by lower voltage 
and higher frequency action [19]. Circadian and homeo-
static signals are integrated in the diencephalic structures 
to initiate sleep [19]. Once sleep is initiated, an ultradian 
oscillator in the mesopontine junction modulates the 
usual alternation of NREM and REM sleep [19]. During 
NREM sleep, there is decreased sympathetic tone and 
increased parasympathetic activity that creates a state 
of reduced activity [19]. REM sleep is characterized by 
increased parasympathetic activity and adjusted sym-
pathetic activity [20]. NREM sleep occurs in 3 stages. 
Stage 1 of NREM sleep is the switch from wakefulness 
to sleep, which usually lasts less than 10 min; it is a light 
sleep stage characterized by slow breathing and heart-
beats and muscle relaxation [21]. Stage 2 of NREM sleep 
is also a light sleep stage, preceding the deep sleep stages 
of NREM sleep. Breathing and heartbeats become slower, 

with more relaxation of muscles and slower brain activity. 
This stage lasts for about 30–60 min [21]. Stage 3 involves 
deep sleep, where breathing and heartbeats become very 
slow. In this stage, muscles are relaxed, and brain waves 
are even slower. This stage lasts for about 20 to 40  min 
[21].

REM sleep is the final phase of sleep before a new 
cycle begins. Breathing and heartbeats are faster in this 
phase, and most dreaming occurs during REM sleep [22]. 
NREM sleep is associated with significant reductions in 
blood flow and metabolism, while total blood flow and 
metabolism in REM sleep is comparable to wakefulness 
[22]. Growth hormone secretion usually occurs during 
the first few hours after sleep onset while thyroid hor-
mone secretion increases later [22].

Neurophysiology of wakefulness
Wakefulness is a state of arousal in which there is a con-
scious surveillance of the environment and the ability to 
respond to external stimuli [23]. It juxtaposes the state 
of sleep in which there is decreased sensitivity to exter-
nal stimuli [23]. The longer the brain has been awake, 
the higher the synchronous firing rates of cerebral cor-
tex neurons. However, after prolonged periods of sleep, 
both the speed and synchronicity of the neurons’ fir-
ing are reduced [24]. Wakefulness reduces glycogen in 
astrocytes, which delivers energy to neurons, and this 
is replenished during sleep [25]. Wakefulness occurs via 
communication between several neurotransmitters aris-
ing in the brainstem and ascending through the mid-
brain, hypothalamus, thalamus, and basal forebrain [26]. 
The posterior hypothalamus contributes importantly to 
cortical activation that triggers wakefulness [26]. Neu-
ral communications involving the posterior hypothala-
mus control shifts from wakefulness to sleep and vice 
versa [26]. Histamine neurons in the tuberomammillary 
nucleus and adjacent posterior hypothalamus project 
into the whole brain and impact wake-selective brain net-
works [27]. Orexin-containing neurons in areas adjacent 
to histamine neurons project extensively to most brain 
areas and are linked to arousal [28]. Orexin insufficiency 
has been associated with daytime sleepiness and unex-
pected bouts of sleep [29]. Orexin and histamine neurons 
work synchronously to regulate sleep and wakefulness 
by contributing to wakeful behaviour and wakefulness 
and cortical activity, respectively [30, 31].

Homeostatic regulations of sleep
Sleep homeostasis occurs during prolonged wakefulness 
[32]. Sleepiness and sleep tension increase, and when 
sleep is allowed, adequate duration and volume of sleep 
are intended to compensate [32]. Adenosine in the basal 
forebrain is a prominent physiological mediator of sleep 
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homeostasis [32, 33]. Adenosine is an endogenous fac-
tor produced in neurons and glia by the metabolism of 
adenosine triphosphate [34]. Adenosine accumulates 
in the extracellular space, where it can prompt regula-
tory actions on the sleep–wakefulness cycle circuits [34]. 
Adenosine acts on the purinergic receptors A1 and A2 
[34].

Caffeine, an adenosine receptor antagonist, is a widely 
used stimulant. Caffeine promotes a state of alertness by 
centrally blocking adenosine A2A receptor, a G-protein-
coupled receptor that is important for regulating myo-
cardial oxygen consumption, coronary blood flow, and 
central nervous system neurotransmitters [34]. Nitric 
oxide, a neuromodulator, is synthesized by inducible 
nitric oxide synthase in the basal forebrain during pro-
longed wakefulness [35]. Inducible nitric oxide synthase 
is produced during inflammation, and there is an asso-
ciation between prolonged wakefulness and activation of 
the immune response [36]. The influx of histamine, a cor-
tex-activating neurotransmitter, into the basal forebrain 
increases wakefulness and reduces sleep [31–37]. Persis-
tent wakefulness lengthens the cycle of neuronal activity 
in various brain areas and consequently increases energy 
consumption. During energy depletion, the concentra-
tion of adenosine increases [38]. Sleep homeostasis may 
be linked to energy exhaustion because of prolonged 
neuronal activation during prolonged wakefulness [38]. 
Recovery sleep after sleep restriction improves less in 
older animals. Moreover, increases in adenosine, nitric 
oxide, and lactate concentrations have been found to 
be blunted in older individuals, signifying that the main 
regulators of sleep homeostasis and homeostatic sleep 
responses are affected by aging [39, 40].

Circadian regulations of the human sleep–wake cycle
The daily regulation of sleep/wakefulness relies on the 
circadian clock involving the suprachiasmatic nucleus 
(SCN) [41]. SCN neuronal activity displays circadian 
variations. The SCN connects transcription–translation 
negative feedback loops to generate circadian rhythms in 
clock gene expression (involving such clock genes as Per, 
Cry, and Bmal1) within a period of approximately 24  h 
[42, 43].

The electrical activity of the SCN is higher during 
daytime and lower at night [44]. Neurotransmitters and 
hormonal factors control the circadian rhythm in the 
SCN. For example, the endogenous rhythm of mela-
tonin secretion, a hormone synthesized and secreted by 
the pineal gland at night under dark conditions, is har-
monized by the SCN and attuned to light/dark cycles. 
More specifically, blue light (460–480  nm) is capable of 
suppressing melatonin biosynthesis during the night [45]. 
However, a key physiological role of melatonin is to carry 

information regarding the daily cycle of light and dark-
ness to body structures [45]. This information is utilized 
for the harmonization of physiological activities that 
react to adjustments during the period of exposure to 
light [45]. SCN neurons project to specific brain regions, 
including the sub-paraventricular region and dorsome-
dial nucleus of the hypothalamus, to control multiple 
physiological activities. SCN neurons also contribute 
importantly to the regulation of sleep and wakefulness 
[46]. The sleep–wake cycle progresses from intervals of 
wakefulness to NREM sleep to REM sleep. Each alert-
ness stage reflects functioning in several neuronal sys-
tems, including the mesolimbic dopamine system [47]. 
Activating neurons containing glutamatergic nitric oxide 
synthase 1 promotes wakefulness via projections to 
the nucleus accumbens, and the lateral hypothalamus, 
whereas lesioning glutamate cells decreases the initiation 
of wakefulness [47]. However, activation of GABAergic 
neurons in the ventral tegmental area promotes long-
lasting non-REM-like sleep resembling sedation, whereas 
lesioning these neurons promotes wakefulness [48].

A two-process model has been posited for the regula-
tion of sleep and wakefulness. These processes (S and C) 
are powered by homeostatic mechanisms and the circa-
dian clock, respectively [49]. More specifically, process S 
signifies sleep pressure, which rises as a function of the 
duration of wakefulness, whereas process C is regulated 
by the circadian clock, and it relies on the cycle of circa-
dian rhythms in the body [49].

Pathophysiological processes associated with sleep 
deprivation and an altered circadian clock
Sleep disorders are very common in the global popula-
tion, and many people who suffer from them go undiag-
nosed and untreated [50]. A variety of factors, including 
lifestyle, physiological, psychological, and genetic factors, 
have been linked to sleep disorders [50]. Sleep–wake 
cycle disruptions frequently have an impact on mental 
health [51]. Disruptions in sleep may be precursors to 
neurodegenerative diseases [52].During normal aging, 
sleep changes include decreases in total sleep time, REM 
sleep, and deep NREM sleep, as well as increases in time 
spent in light NREM phases [53].

However, some oscillatory patterns of sleep alterations 
mostly decrease slow wave activity and spindle density. 
Alteration in slow oscillation-sleep spindle coupling and 
theta-gamma coupling are linked to biomarkers of Alz-
heimer’s disease. Sleep irregularities are associated with 
amyloid beta and tau protein, suggesting that sleep dis-
ruption might reflect early symptoms of Alzheimer’s dis-
ease [53].

Genes also play an important role in the pathogenesis 
of sleep disorders [54]. A mutation in hPer2, a human 
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Period gene essential for resetting the central clock in 
response to light, is linked to familial advanced sleep 
phase syndrome, an autosomal dominant ailment with 
early morning waking and early sleep times [55]. Some 
regulators of gene expression (methylases and acetylases, 
core clock genes, and ribosomal proteins) are affected by 
sleep disruption [56].

Mistimed sleep disrupts circadian regulation of the 
human transcriptome by altering molecular processes 
of the circadian rhythm system. Proper sleep timing may 
thus help to organize the human transcriptome’s tempo-
ral organization [56]. In one study, four days of simulated 
night shifts diminished temporal coordination between 
the human circadian transcriptome and external envi-
ronment, providing insight into mechanisms underlying 
unfavourable health impacts linked to night shift work 
[57]. Rhythmic metabolites are misaligned relative to the 
endogenous circadian system during night shifts, and this 
could be a factor underling poor metabolic health among 
shift workers [58]. Given that sleep and mood disorders 
have been associated with poor performance among 
healthcare workers [59], mechanistic insight may help 
intervention development.

Classification of circadian rhythm sleep–wake disorders
Circadian rhythm sleep–wake disorder (CRSWD) is 
defined as sleep–wake disturbances caused by endog-
enous circadian system disruptions or desynchronization 
between internal and external sleep–wake rhythms [60]. 
CRSWD patients frequently complain of chronic exces-
sive daytime sleepiness and/or insomnia, which inter-
feres with their activities [60].The diagnosis of CRSWD 
is based on the outcome of some functional assessments 
that involve assessing the circadian phase using core 
body temperature, timing of melatonin secretion, sleep 
diaries, actigraphy, and subjective experiences (exam-
ple, using the Morningness–Eveningness Questionnaire) 
[61]. Treatment may include personalized sleep schedul-
ing, circadian phase shifting/clock resetting, and/or the 
use of hypnotics and stimulant drugs [61]. Epidemio-
logical studies suggest that up to 3% of the global adult 
population experiences CRSWD [62]. An estimated 10% 
of adults and 16% of adolescents with reported cases of 
sleep disruption may have a delay in the sleep–wake cycle 
of about 3–6  h later than desired [62]. The second edi-
tion of the International Classification of Sleep Disor-
ders classifies CRSWD as a dyssomnia, with six subtypes 
including advanced sleep phase, delayed sleep phase, 
irregular sleep–wake, free running, jet lag, and shift work 
types [63]. CRSWD can also be transient (caused by jet 
lag, shift work, or illness) or chronic (caused by delayed 
sleep–wake phase disorder (DSWPD), advanced sleep–
wake phase disorder (ASWPD), non-24-h sleep–wake 

disorder (N24SWD), and irregular sleep–wake rhythm 
disorder (ISWRD) [64]. The major proven feature of all 
CRSWDs is the inability to fall asleep and wake up at the 
desired time [64]. It is considered that CRSWDs evolve 
from problems with internal biological clocks and/or 
misalignment between the circadian timing system and 
the external 24-h environment [65].

DSWPD is a common CRSWD. While widespread, it 
represents a small fraction of severe insomnia. Individu-
als who are affected report difficulty falling asleep and 
waking up during normal working hours [66]. Approxi-
mately 10% of individuals with insomnia who have 
sought treatment in hospitals have DSWPD [17]. Higher 
percentages have been reported based on surveys and 
telephone sampling. Integrated skewed and unbiased 
measures estimate the prevalence of DSWPD among the 
global population to be 0.13–3.1% [67]. DSWPD is more 
prevalent in girls than in boys [68].

ASWPD is characterized by persistent early evening 
sleep onset and early morning awakening, although the 
condition of awakening earlier than anticipated is com-
mon among older adults [69]. The prevalence of ASWPD 
has been estimated to range from 0.25 to 7% [70]. An 
advanced sleep phase phenotype was found among 0.33% 
of patients registered in a sleep clinic, and an estimated 1 
in 2500 patients evaluated for sleep disorder has ASWPD 
[71].

N24SWD is a cyclic, often devastating CRSWD char-
acterized by severe difficulties sleeping on a 24-h sched-
ule [72]. Individuals isolated from a 24-h light–dark 
cycle exhibit sleep–wake cycles different from 24 h [72]. 
N24SWD is more common among totally blind individu-
als because of the lack of light information reaching the 
circadian pacemaker in the hypothalamus [72]. N24SWD 
is unusual among sighted individuals. It has been associ-
ated with delayed sleep–wake rhythm disorder or mental 
disorders [72].

ISWRD is a circadian rhythm disorder characterized by 
multiple bouts of sleep within a 24-h period [73]. Indi-
viduals report symptoms of insomnia, including difficulty 
either falling or remaining asleep, and daytime excessive 
sleepiness [73]. ISWRD is associated with neurologi-
cal illnesses. It is usually diagnosed among children with 
neurodevelopmental disorders, patients with neuropsy-
chiatric disorders, and, most usually, older adults with 
neurodegenerative disorders [73].

Potential risk factors for circadian rhythm sleep–wake 
disorders
Genetic influences contribute significantly to nearly all 
types of CRSWD, including DSWPD [74]. A length pol-
ymorphism in hPer3 has been associated with severe 
diurnal preference [75]. A polymorphism of the gene 
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coding for arylalkylamine N-acetyltransferase and the 
leucocyte antigen DR1 have been linked to DSWPD in 
small studies [76]. Individuals with neurodegenerative 
disorders (Alzheimer’s, Parkinson’s, or Huntington’s 
disease) are more likely to experience ISWRD [77]. 
Blindness or visual impairment is a major risk factor 
for N24SWD given deficiencies in light perception [78]. 
The presence of artificial light, noisy environments, and 
higher room temperatures may impair sleep quality and 
are vital factors to consider in the management of sleep 
disorders [79]. Trans-meridian travel predisposes flight 
attendants to jet lag, a consequence of circadian mis-
alignment that occurs after crossing time zones quickly 
and outpacing the circadian clock [80].

In addition to genetic factors, physiological and 
behavioural factors contribute to CRSWD. Changes in 
sensitivity contribute to the vulnerability of developing 
CRSWD [81]. Zeitgebers are normal, occurring events 
functioning as time cues to help regulate the circadian 
rhythm and thus maintain the sleep–wake cycle [82]. 
Zeitgebers such as light, eating, and physical activity 
provide feedback to the circadian clock [82]. However, 
distorted, or disrupted sensitivity to zeitgebers may 
increase the risk of CRSWD [83]. The habitual intake 
of psychoactive substances (example, caffeine) at night 
may prolong sleep latency, reduce total sleep time, 
impair sleep efficiency, and worsen perceived sleep 
quality [84].  Night-shift work also increases the likeli-
hood of experiencing CRSWD because it can disrupt 
the synchronous relationship between the body’s inter-
nal clock and the environment [85].

Summary of the clinical features of circadian rhythm 
sleep–wake disorders
Insomnia, daytime somnolence, sleep disturbances, 
poor sleep quality, depression, poor concentration, 
decreased job performance, headaches, reduced cog-
nitive function, and poor coordination are common 
symptoms of CRSWDs [86–88]. According to the third 
edition of the International Classification of Sleep Dis-
orders, insomnia is described as a problem with either 
initiating sleep, maintaining sleep continuity, or experi-
encing poor sleep quality [89]. Despite advances in the 
clinical management of CRSWDs, clinical diagnosis of 
circadian disruption remains complex [90]. Diagnostic 
specification involves analysing fluctuations of plasma 
melatonin levels over time, necessitating sequential 
sampling, typically in the evening and in dim light [90]. 
However, blood assays have been merged with compu-
tational techniques to detect markers of circadian tim-
ing, providing accurate assessment of circadian phases 
[90].

Conclusions
Humans’ sleep is characterized by a loss of conscious-
ness and a condition of absolute inertia in a supine posi-
tion with the eyes closed. The suppression of activity in 
the ascending arousal systems is necessary for the onset 
and continuation of sleep. The inhibitory neurons of the 
ventrolateral preoptic region are responsible for this. 
CRSWDs are a subset of sleep disorders that are char-
acterized by changes in the circadian system, its syn-
chronization processes, or a lack of alignment of the 
internal circadian rhythm with the surrounding environ-
ment. The primary sleep period is either earlier or later 
than expected, is irregular from day to day, and/or sleep 
occurs at the wrong chronological period in CRSWDs. 
Dysregulation may occur at the SCN, resulting in rhythm 
mistiming.
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